Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Adler Hegelund posted an update 1 week, 1 day ago

    The objective of this study was to extend a stable isotope-based assessment of AA absorption from rumen-degradable protein (RDP) sources to include determination of essential AA (EAA) availability from microbial protein (MCP). To demonstrate the technique, a study using a 2 × 2 factorial arrangement of treatments applied in a repeated 4 × 4 Latin square design was undertaken. Factors were high and low rumen-degradable protein and high and low starch. Twelve lactating cows were blocked into 3 groups according to days in milk and randomly assigned to the 4 treatment sequences. Each period was 14 d in length with 10 d of adaption followed by 4 d of ruminal infusions of 15N-labeled ammonium sulfate. On the last day of each period, a 13C-labeled AA mixture was infused into the jugular vein over a 6-h period to assess total AA entry. Rumen, blood, urine, and milk samples were collected during the infusions. Ruminal bacteria and blood samples were assessed for AA enrichment. BAY 2666605 research buy Total plasma AA absorption rates were derhe former method. Compared with the isotope and CNCPS estimates, the Fleming model underestimated microbial EAA and total EAA availability. An average of 58% of the absorbed EAA was converted into milk, which varied among individual AA and was interactively affected by starch and RDP in diets. The isotope dilution approach is advantageous because it provides estimates of EAA availability for individual EAA from rumen-undegradable protein and MCP directly with fewer errors of measurement than can be achieved with intestinal disappearance methods.During the thermal processing of milk, Maillard reactions occur between proteins and lactose to generate glycated proteins. In this study, a lactose-glycated caseinate was hydrolyzed by trypsin. The obtained glycated caseinate (GCN) hydrolysate had a lactose content of 10.8 g/kg of protein. We identified its glycation sites and then assessed it for its protective effect against lipopolysaccharide-induced barrier injury using a rat intestinal epithelial cell line (IEC-6 cells) as a cell model and unglycated caseinate (CN) hydrolysate as a reference. Results from our liquid chromatography-mass spectrometry analysis of the GCN hydrolysate verified that lactose glycation occurred at the Lys residues in 3 casein components (αS1-casein, β-casein, and κ-casein), and this resulted in the formation of 5 peptides with the following amino acid sequences EMPFPKYPKYPVEPF, HIQKEDVPSE, GSENSEKTTMPL, NQDKTEIPT, and EGIHAQQKEPM. The results from cell experiments showed that the 2 hydrolysates could promote cell growth and decrease lactate dehydrogenase release in the lipopolysaccharide-injured cells; more importantly, they could partially protect the damaged barrier function of the cells by increasing trans-epithelial electrical resistance, decreasing epithelial permeability, and upregulating the expression of the 3 tight junction proteins zonula occludens-1, occludin, and claudin-1. However, compared with CN hydrolysate, GCN hydrolysate showed lower efficacy in protecting against cellular barrier dysfunction. We propose that the different chemical characteristics of the CN hydrolysate and the GCN hydrolysate (i.e., amino acid loss and lactose conjugation) contributed to the lower barrier-protective efficacy of the GCN hydrolysate. During dairy processing, protein glycation of the Maillard type might have a non-negligible, unfavorable effect on dairy proteins, in view of the resulting protein glycation we found and the critical function of proteins for maintaining the integrity of the intestinal barrier.This study explores the inhibitory properties of camel whey protein hydrolysates (CWPH) toward α-amylase (AAM) and α-glucosidase (AG). A general full factorial design (3 × 3) was applied to study the effect of temperature (30, 37, and 45°C), time (120, 240, and 360 min), and enzyme (pepsin) concentration (E%; 0.5, 1, and 2%). The results showed that maximum degree of hydrolysis was obtained when hydrolysis was carried out at higher temperature (45°C; P 0.8; http//pepsite2.russelllab.org/) were explored via in silico approach. Novel peptides PAGNFLMNGLMHR, PAVACCLPPLPCHM, MLPLMLPFTMGY, and PAGNFLPPVAAAPVM were identified as potential inhibitors for both AAM and AG due to their high number of binding sites and highest binding probability toward the target enzymes. CCGM and MFE, as well as FCCLGPVPP were identified as AG and AAM inhibitory peptides, respectively. This is the first study that reports novel AG and AAM inhibitory peptides from camel whey proteins. The future direction for this research involves synthesis of these potential AG and AAM inhibitory peptides in a pure form and investigate their antidiabetic properties in the in vitro, as well as in vivo models. Thus, CWPH can be considered for potential applications in glycaemic regulation.We studied the effects of seasonal variations on the quality of stirred yogurt, set yogurt, and Greek-style yogurt over 2 milking seasons in New Zealand. Correlations between the properties of the yogurts, the characteristics of the milk, and the acid gelation properties induced by glucono-δ-lactone, reported in our previous works, were also explored. Set yogurt and Greek-style yogurt from the early season had the highest firmness over the seasons. The yogurt firmness correlated with the gel strength of glucono-δ-lactone-induced acid gels, indicating that the latter could, to some extent, predict the seasonal variations in the firmness of set yogurt. The correlation studies highlighted the potentially important role of the glycosylation of κ-casein in the seasonal variations in the yogurt structures. Yogurt made from mid-season milk had the lowest water-holding capacity, which may have played a part in lowering its firmness and viscosity. Late-season stirred yogurt displayed the strongest resistance to shear-induced thinning, which might arise from the unique viscoelastic properties of late-season yogurt gels.Circadian and metabolic systems are interlocked and reciprocally regulated. To determine if the circadian system regulates glucose homeostasis and mammary development, the function of the circadian system was disrupted by exposing cattle to chronic light-dark cycle phase shifts from 5 wk before expected calving (BEC) to parturition. Multiparous Holstein cows were exposed to 16 h of light and 8 h of dark (CON, n = 8) or phase shifting (PS, n = 8) the light cycle 6 h every 3 d beginning 35 d BEC. After calving, both treatments were exposed to CON lighting. Mammary biopsies were taken at 21 d BEC and 21 d in milk (DIM), and histological analysis indicated PS treatment decreased the ratio of lumen to alveolar area and percentage of proliferating epithelial cells in the prepartum period. Intravenous glucose tolerance test was performed at 14 d BEC and 7 DIM by administering 50% dextrose. Blood glucose, β-hydroxybutyrate, insulin, and nonesterified fatty acids were consequently measured over 3 h. At 14 d BEC no treatment differences were observed in baseline glucose or insulin.

Facebook Pagelike Widget

Who’s Online

Profile picture of McBride Skriver
Profile picture of Proctor Munro
Profile picture of Lauridsen McCollum
Profile picture of Lassiter Smed
Profile picture of Harper Johannesen
Profile picture of Schou Mahoney
Profile picture of Frederick Fox
Profile picture of Dreyer Spencer
Profile picture of Faulkner Fox
Profile picture of McGarry Simpson