Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Ratliff Kiilerich posted an update 4 days, 8 hours ago

    These results are very important in promoting our understanding of the effects of molecular fractionation on the biogeochemical features, behaviors, and implications of DOM in the environment.Despite the ever-growing endangerment caused by the multidrug resistance (MDR) of bacteria, the development of effective antibacterial materials still remains a global challenge. Current antibiotic therapies cannot simultaneously inactivate bacteria and accelerate wound healing. This study aimed to originally separate the intercalation of MnO3+ and the oxidation processes to synthesize epoxy-rich graphene oxide (erGO) nanofilms via an eco-friendly synthetic route, which possessed low density and large lamellar distribution and was rich in epoxide. Importantly, the MnO3+ could be separated from the product and recycled for preparing the next generation of erGO nanofilms, which was quite economical and eco-friendly. The erGO nanofilm was capable of successfully inhibiting Gram-negative bacteria and even had excellent growth-inhibitory effects on Gram-positive bacteria including multidrug resistance (MDR) bacteria, as evidenced by antibacterial phenomena. Additionally, the erGO nanofilm with high •C density formed from epoxide exerted excellent antibacterial effects through tight membrane wrapping and induction of lipid peroxidation. The wound-healing property of the erGO nanofilm was evaluated via treatments of wounds infected by Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), which not only killed bacteria but also accelerated wound healing in mice with a skin infection. The novel erGO nanofilm with dual antimicrobial mechanisms might serve as a promising multifunctional antimicrobial agent for medical wound dressing with high biocompatibility.Recently, metal-organic frameworks (MOFs) have been investigated as potential materials for CO2 capture and light hydrocarbon storage/separation due to their high porosity, large surface area, and tunable skeleton structures. In this work, the six cobalt-based MOFs 1-6 were successfully synthesized under solvothermal conditions by a mixed-ligand strategy. 1 and 2 have the same framework structure with a topology of 42·5244·510·67·76·8, while the structures of the 3-6 frameworks are the same with a topology of 42·5244·510·69·74·8. The adsorption properties of these MOFs for CO2 and C2 hydrocarbons were then investigated, and the effect of the functional groups was discussed. The results revealed that the introduction of amino and bromo groups could effectively strengthen the adsorption performance.A manganese-catalyzed N-alkylation reaction of amines with alcohols via hydrogen autotransfer strategy has been demonstrated. The developed practical catalytic system including an inexpensive, nontoxic, commercially available MnCl2 or MnBr(CO)5 as the metal salt and triphenylphosphine as a ligand provides access to diverse aromatic, heteroaromatic, and aliphatic secondary amines in moderate-to-high yields. In addition, this operationally simple protocol is scalable to the gram level and suitable for synthesizing heterocycles such as indole and resveratrol-derived amines known to be active for Alzheimer’s disease.Polyphenols are well-known native cross-linkers and gel strengthening agents for many animal proteins. Bay K 8644 However, their role in modifying plant protein gels remains unclear. In this study, multiple techniques were applied to unravel the influence of green tea polyphenols (GTP) on pea protein gels and the underlying mechanisms. We found that the elasticity and viscosity of pea protein gels decreased with increased GTP. The protein backbone became less rigid when GTP was present based on shortened T1ρH in relaxation solid-state NMR measurements. Electron microscopy and small-angle X-ray scattering showed that gels weakened by GTP possessed disrupted networks with the presence of large protein aggregates. Solvent extraction and molecular dynamic simulation revealed a reduction in hydrophobic interactions and hydrogen bonds among proteins in gels containing GTP. The current findings may be applicable to other plant proteins for greater control of gel structures in the presence of polyphenols, expanding their utilization in food and biomedical applications.Protein gelation is an important phenomenon in processed meats. The present study investigated the structure-activity relationship of six phenolic compounds, that is, gallic acid (GA), chlorogenic acid (CA), propyl gallate (PG), quercetin (QT), catechin (CC), and (-)-epigallocatechin-3-gallate (EGCG) in a myofibrillar protein (MP) gelling system under controlled oxidative conditions. All phenolics induced unfolding and promoted cross-linking of MP via sulfhydryl or amine groups. At an equal molar concentration, EGCG boosted the elastic MP gel network more than other phenolics except PG. However, all three monophenols (GA, CA, and PG) and the diphenol QT increased the MP gel strength more than CC (diphenol) and EGCG (triphenol). The flavanol structure appeared to interfere with the protein gel structure development. All phenolics retarded lipid oxidation in MP-emulsion composite gels during refrigerated storage with the least polar phenolic compounds, PG and QT, showing the greatest efficacy.Ceramics including oxides, carbides, nitrides, borides, carbonitrides, silicates, and MAX phases have wide applications in electrode materials, high-temperature structural materials, and anticorrosive materials for harsh environments. However, the difficulty in processing ceramics with complex shapes from green powders has been restricting applications in emerging areas. Herein, polymer-derived ceramics (PDCs) were used to assist the pressureless processing of MAX phase particles. The processing temperature could be lowered by 400 to 600 °C, which is favorable for both industrialization and engineering applications. The good processability of MAX-preceramic polymer mixtures and high accuracy of replica from preceramic polymer make it possible to fabricate artificial objects with complex shapes and fine texture. This method provides a method to fabricate MAX phase ceramics/composites, as well as some other ceramics.

Facebook Pagelike Widget

Who’s Online

Profile picture of palermo2
Profile picture of Gaines Emerson
Profile picture of Bech Bryant
Profile picture of Weeks Dillon
Profile picture of Henson Bugge