Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Salas Tobiasen posted an update 1 day, 7 hours ago

    This study investigated the environmental application of FAU type zeolites modified with cationic surfactants (cetylpyridinium chloride, tetrapropylammonium chloride and benzalkonium chloride). GSK343 in vivo Adsorbent characterization was conducted using Fourier-transform infrared and Raman spectroscopy, thermogravimetry and differential thermal analysis, atomic force microscopy and X-ray powder diffraction. The efficiency for tannic acid adsorption from aqueous solution on the surface of prepared composites is studied and the adsorption process was modelled with different isotherm equations. Surfactant modifications of zeolites led to improved adsorption properties compared to FAU zeolites alone. The proposed mechanism controlling the adsorption of tannic acid onto surfactant modified zeolites mainly relies on π-π and hydrophobic interactions. The investigated materials are promising adsorbents for tannic acid and similar phenolics and may be important for environmental and dietary aspects of polyphenol persistence and usage. Further on, functionalized zeolites were studied for insecticide acetamiprid removal, prior to and after tannic acid retention. Promising findings of insecticide co-adsorption with tannic acid led to cytotoxicity evaluation. The cytotoxicity modulation effect of zeolites and tannic acid on acetamiprid points to the essential role of both components in insecticide toxicity reduction.Pyridinyl- and phosphano-guanidino complexes of formula [(η6-p-cymene)OsCl(H2L)][SbF6] (cymene = MeC6H4iPr; H2L = N,N’-bis(p-Tolyl)-N”-(2-pyridinylmethyl)guanidine, H2L1 (1) and N,N’-bis(p-Tolyl)-N”-(2-diphenylphosphanoethyl)guanidine, H2L2 (2)) have been prepared from the dimer [(η6-p-cymene)OsCl2(μ-Cl)2] and H2L in the presence of NaSbF6. Treatment of complex 2 with HCl renders the phosphano-guanidinium complex [(η6-p-cymene)OsCl2(H3L2)][SbF6] (3). Compounds 1 and 2 react with AgSbF6 rendering the cationic aqua complexes [(η6-p-cymene)Os(H2L)(OH2)][SbF6]2 (H2L = H2L1 (4), H2L2 (5)). Addition of monodentate ligands L to compound 4 affords complexes of formula [(η6-p-cymene)Os(H2L1)L][SbF6]2 (L = py (6), 4-(NHMe)py (7), CO (8), P(OMe)3 (9)). Treatment of complexes 4 and 5 with NaHCO3 renders the monocationic complexes [(η6-p-cymene)Os(κ3N,N’,N”-HL1)][SbF6] (10) and [(η6-p-cymene)Os(κ3N,N’,P-HL2)][SbF6] (11), respectively, in which the HL ligand adopts a fac-κ3 coordination mode. The new complexes have been characterised by analytical and spectroscopic means, including the determination of the crystal structures of the compounds 1-4, 6, 8, and 11, by X-ray diffractometric methods. The phosphano-guanidino complexes 2 and 5 exhibit a temperature dependent fluxional process in solution. The new 18 electron complexes 1, 2, 6, and 8-10 are active catalysts for the Friedel-Crafts reaction between trans-β-nitrostyrene and N-methyl-2-methylindole. Conversions greater than 90% were obtained. Proton NMR studies support a mechanism involving the Brønsted-acid activation of trans-β-nitrostyrene through the NH functionalities of the coordinated guanidine ligands.Chromatographic columns are suffering from Taylor-Aris dispersion, especially for slowly diffusing molecules such as proteins. Since downscaling the channel size to reduce Taylor-Aris dispersion meets fundamental pressure limitations, new strategies are needed to further improve chromatography beyond its current limits. In this work we demonstrate a method to reduce Taylor-Aris dispersion by lateral mixing in a newly designed silicon AC-electroosmotic flow mixer. We obtained a reduction in κaris by a factor of three in a 40 μm × 20 μm microchannel, corresponding to a plate height gain of 2 to 3 under unretained conditions at low to high Pe values. We also demonstrate an improvement of a reverse-phase chromatographic separation of coumarins.This work reports the development of a rapid, simple and inexpensive colorimetric paper-based assay for the detection of the severe acute respiratory symptom coronavirus 2 (SARS-CoV-2) humanized antibody. The paper device was prepared with lamination for easy sample handling and coated with the recombinant SARS-CoV-2 nucleocapsid antigen. This assay employed a colorimetric reaction, which is followed by horseradish peroxidase (HRP) conjugated detecting antibody in the presence of the 3,3′,5,5′-tetramethylbenzidine (TMB) substrate. The colorimetric readout was evaluated and quantified for specificity and sensitivity. The characterization of this assay includes determining the linear regression curve, the limit of detection (LOD), the repeatability, and testing complex biological samples. We found that the LOD of the assay was 9.00 ng μL-1 (0.112 IU mL-1). The relative standard deviation was approximately 10% for a sample number of n = 3. We believe that our proof-of-concept assay has the potential to be developed for clinical screening of the SARS-CoV-2 humanized antibody as a tool to confirm infected active cases or to confirm SARS-CoV-2 immune cases during the process of vaccine development.A simple model, based on connectivity (adjacency) matrices, is introduced to study the relative stability of hydrogenated polycyclic aromatic hydrocarbons (HPAHs). The model allows us to consider a very large number of isomeric structures for HPAHs of variable size and degree of hydrogenation, by taking into account the different positions available in each hydrogenation step. The validity of our approach is demonstrated by comparing, for a few selected cases, with the predictions of Density Functional Theory calculations. We have found that aromaticity is the main factor governing the relative stability of HPAH isomers and that the most stable structures are in general those containing the maximum possible number of non-hydrogenated rings.Ammonia borane NH3·BH3 is considered a promising material for hydrogen storage and release, and is attracting increasing attention as a relatively inexpensive, atom economy-convenient and viable reagent for developing new green synthetic transformations. The present review offers a wide overview on the use of AB in the reduction of organic compounds, and highlights the versatility of this reagent, due to the possibility of modulating its activity employing different strategies, which include the use of transition metals, p-block species, organocatalysts and FLP systems.

Facebook Pagelike Widget

Who’s Online

Profile picture of Bailey Nyholm
Profile picture of powafoc890
Profile picture of Josephsen Driscoll
Profile picture of Poole Hougaard
Profile picture of Sosa Boswell
Profile picture of Freeman Castaneda
Profile picture of Gray Tolstrup
Profile picture of Enemark Gillespie