-
Eaton Vinther posted an update 1 week, 1 day ago
Rather, highly variable responses, even under weak pressures, suggest that ‘safe-operating spaces’ are unlikely to be quantifiable.The SARS-CoV-2 virus emerged in December 2019 and has caused a worldwide pandemic due to the lack of any pre-existing immunity. Accurate serology testing is urgently needed to help diagnose infection, determine past exposure of populations and assess the response to a future vaccine. The landscape of antibody responses to SARS-CoV-2 is unknown. In this study, we utilized the luciferase immunoprecipitation system to assess the antibody responses to 15 different SARS-CoV-2 antigens in patients with COVID-19. We identified new targets of the immune response to SARS-CoV-2 and show that nucleocapsid, open reading frame (ORF)8 and ORF3b elicit the strongest specific antibody responses. ORF8 and ORF3b antibodies, taken together as a cluster of points, identified 96.5% of COVID-19 samples at early and late time points of disease with 99.5% specificity. Our findings could be used to develop second-generation diagnostic tests to improve serological assays for COVID-19 and are important in understanding pathogenicity.Type 2 cytokine responses promote parasitic immunity and initiate tissue repair; however, they can also result in immunopathologies when not properly restricted. Although basophilia is recognized as a common feature of type 2 inflammation, the roles basophils play in regulating these responses are unknown. Selleck BAF312 Here, we demonstrate that helminth-induced group 2 innate lymphoid cell (ILC2) responses are exaggerated in the absence of basophils, resulting in increased inflammation and diminished lung function. Additionally, we show that ILC2s from basophil-depleted mice express reduced amounts of the receptor for the neuropeptide neuromedin B (NMB). Critically, NMB stimulation inhibited ILC2 responses from control but not basophil-depleted mice, and basophils were sufficient to directly enhance NMB receptor expression on ILC2s. These studies suggest that basophils prime ILC2s to respond to neuron-derived signals necessary to maintain tissue integrity. Further, these data provide mechanistic insight into the functions of basophils and identify NMB as a potent inhibitor of type 2 inflammation.Pancreatic ductal adenocarcinoma carries a dismal prognosis, and outcomes have improved little with modern therapeutics. Checkpoint-based immunotherapy has failed to elicit responses in the vast majority of patients with pancreatic cancer. Alongside tumor cell-intrinsic mechanisms associated with oncogenic KRAS-induced inflammation, the tolerogenic myeloid cell infiltrate has emerged as a critical impediment to adaptive antitumor immune responses. Furthermore, the discovery of an intratumoral microbiome and the elucidation of host-microbe interactions that curtail antitumor immunity also present opportunities for intervention. Here we review the mechanisms of immunotherapy resistance in pancreatic ductal adenocarcinoma and discuss strategies to directly augment T cell responses in parallel with myeloid cell- and microbiome-targeted approaches that may enable immune-mediated control of this malignancy.Cancer immunotherapies, particularly therapeutic vaccination, do not typically generate robust anti-tumour immune responses. Here, we show that the intratumoral burst release of the protein annexin A5 from intravenously injected hollow mesoporous nanoparticles made of diselenide-bridged organosilica generates robust anti-tumour immunity by exploiting the capacity of primary tumours to act as antigen depots. Annexin A5 blocks immunosuppressive apoptosis and promotes immunostimulatory secondary necrosis by binding to the phagocytic marker phosphatidylserine on dying tumour cells. In mice bearing large established tumours, the burst release of annexin A5 owing to diselenide-bond cleavage under the oxidizing conditions of the tumour microenvironment and the reducing intracellular conditions of tumour cells induced systemic cytotoxic T-cell responses and immunological memory associated with tumour regression and the prevention of relapse, and led to complete tumour eradication in about 50% of mice with orthotopic breast tumours. Reducing apoptosis signalling via in situ vaccination could be a versatile strategy for the generation of adaptive anti-tumour immune responses.Based on data from the 1980s, Sassen’s influential book ‘The Global City’ interrogated how changes in the occupational structure affect socio-economic residential segregation in global cities. Here, using data for New York City, London and Tokyo, we reframe and answer this question for recent decades. Our analysis shows an increase in the share of high-income occupations, accompanied by a fall in low-income occupations in all three cities, providing strong evidence for a consistent trend of professionalization of the workforce. Segregation was highest in New York and lowest in Tokyo. In New York and London, individuals in high-income occupations are concentrating in the city centre, while low-income occupations are pushed to urban peripheries. Professionalization of the workforce is accompanied by reduced levels of segregation by income, and two ongoing megatrends in urban change gentrification of inner-city neighbourhoods and suburbanization of poverty, with larger changes in the social geography than in levels of segregation.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.