-
Sweet Willis posted an update 3 weeks, 6 days ago
related QOL for clinical and research purposes.Macrophages would engulf circulating oxidized (ox)- low-density lipoprotein and form lipid droplet-laden foam cells. Macrophage foam cells are considered an important therapeutic target of atherosclerosis. The aim of the study was to investigate a hypoxic foam cell model for anti-atherosclerotic drug screening using the chemical hypoxia-mimicking agent cobalt chloride (CoCl2). The oil red O stating results showed that treatment with CoCl2 could induce lipid accumulation and lead to cell transformation to spindle-shaped and lipid-rich foam cells in RAW 264.7 macrophages. Incubation with 150 μM CoCl2 for 24 h significantly increased the area of intracellular lipid droplets in macrophages, compared with the control group. Our findings indicate that CoCl2-triggered macrophage foam cells should be a potential in vitro hypoxia model for atherosclerosis drug discovery.B cell maturation antigen (BCMA) is a membrane-bound receptor that is overexpressed on multiple myeloma cells and can be targeted with biotherapeutics. Soluble shed forms of membrane-associated receptors in circulation can act as a drug sink, especially when it is present in high molar ratio compared to drug concentration, potentially derailing the intended pharmacological mechanism and impacting pharmacokinetic (PK) measurements and efficacious dose predictions. In this study, we present a bioanalytical strategy for assessing dynamic levels of total soluble BCMA before and during treatment with a bispecific antibody targeting BCMA and CD3. Implementation of a ligand binding assay was not successful due to extensive bispecific antibody interference. Instead, we explored two types of immunoaffinity (IA) liquid chromatography-tandem mass spectrometry (LC-MS/MS) assays, one at the protein level and one at the surrogate peptide level. Ultimately, the protein-level IA-LC-MS/MS method was optimized for use in a cynomolgus monkey PK/pharmacodynamic study. In addition, we demonstrated that the method was easily adapted for use with human samples in preparation for translation to the clinic. This work demonstrates the benefit of flexibility and agility in bioanalytical method development in early drug development. this website Multiplatform suitability assessments enable rapid, resource-sparing identification and qualification of clinically translatable assays. We recommend early adoption of this strategy to provide enough time for critical reagent development and assay validation for analysis of shed targets.At present, collecting water directly from the atmosphere has become an effective means to solve the growing shortage of fresh water. Inspired by the structures of trichomes (hairs) of Sarracenia to capture fog and transport water, a series of different high-low rib-like hierarchical texture surfaces were prepared based on the laser method. These surfaces have gradient superwetting and adhesion because of the differences in subsequent preparation methods. In addition, this work discusses the effect of the above performance differences on the efficiency of fog collection and the surface condensation characteristics during fog collection. The results show that the surface of the laser-prepared sample with the mixing unit combination has more efficient fog collection efficiency and droplet removal rate. After 30 min, the amount of drip measured in the atmospheric environment is 8.4 times that of the polished surface. This indicates that the multihierarchical textured surface and superhydrophobicity are essential for improving the droplet removal rate and coagulation efficiency.To improve our understanding of the chemistry of actinide complexes and to spur their development in the field of actinide markers, two new uranium complexes were synthesized using 8-hydroxyquinoline and 5,7-dichloro-8-hydroxyquinoline. The prepared complexes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, ultraviolet-visible spectroscopy, elemental analysis, and single-crystal X-ray diffraction. The impact of the electron-withdrawing group of the ligand on the photoluminescence spectra of the complexes in solution and in the solid state was scrutinized. The bandgap of the complexes was calculated using the density functional theory (DFT) method to investigate the effects of the electron-withdrawing groups on energy levels. The synthesized uranium complexes demonstrated appropriate levels of the lowest unoccupied molecular orbital energy, leading to favorable dye stability. The prepared uranium complexes showed blue fluorescent emission, and the sample with the most intense fluorescence was used to construct bluish-green organic light-emitting diodes using simple solution processing fabrication methods. Absorbance spectra, emission spectra, DFT-calculated energy levels, and comparisons of the fabricated organic light-emitting diodes indicated that the electron-withdrawing group was a key factor in photoluminescence behavior.The research on the design of efficient, reliable, and cost-effective biosensors is expanding given its high demand in various fields such as health care, environmental surveillance, agriculture, diagnostics, industries, and so forth. In the last decade, various fascinating and interesting 2D materials with extraordinary properties have been experimentally synthesized and theoretically predicted. 2D materials have been explored for the sensing of different biomolecules because of their large surface area and strong interaction with different biomolecules. Theoretical simulations can bring important insight on the interaction of biomolecules on 2D materials, charge transfer, orbital interactions, and so forth and may play an important role in the development of efficient biosensors. Quantum simulation techniques, such as density functional theory (DFT), are very powerful and are gaining popularity especially with the advent of high-speed computing facilities. This review article provides theoretical insight regarding the interaction of various biomolecules on different 2D materials and the charge transfer between the biomolecules and 2D materials leading to electrochemical signals, which can then provide experimentalists the useful design parameters for fabrication of biosensors. It also includes an overview of quantum simulations, use of the DFT method for simulating biomolecules on 2D materials, parameters obtained from theoretical simulations and sensitivity, and limitations of computational techniques for sensing biomolecules on 2D materials. Furthermore, this review summarizes the recent work in first-principles investigation of 2D materials for the purpose of biomolecule sensing. Beyond the traditional graphene or 2D transition-metal dichalcogenides, some novel and recently proposed 2D materials such as pentagraphene, haeckelite, MXenes, and so forth which have exhibited good sensing applications have also been highlighted.