Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Schultz Falkenberg posted an update 3 weeks, 4 days ago

    The effect of halogen substituents (X = Br, Cl, and F) on the crystal packing and intra- and intermolecular interactions in four adamantane-thiourea hybrid derivatives is investigated using different theoretical tools. The bromo and chloro derivatives exhibit 3D isostructurality as evident from lattice parameters, molecular conformation, and crystal packing. The density functional theory study suggests that the molecular conformation of the parent (unsubstituted) and fluoro derivatives exhibits a stable low energy anti-syn conformation. In contrast, bromo and chloro derivatives adopt stable and relatively high energy minima on their potential energy surfaces. Hirshfeld surface analysis reveals the effect of halogen substituents on the intermolecular contacts. The halogen atoms mainly reduce the contribution of H···H contacts toward crystal packing. PIXEL energy analysis indicates the strong dimer formed by N-H···S hydrogen bonds in all four structures. It also revealed that a vast number of H···H contacts observed in different dimers of these structures either presented along with other conventional interactions or solely stabilize the dimeric topology. The topological parameters for intermolecular interactions in these structures suggest an intermediate bonding character between shared and closed-shell interactions for N-H···S hydrogen bonds in the parent and chloro derivatives. In contrast, the N-H···S hydrogen bond in other structures is of a closed-shell interaction. Among four derivatives, the fluoro derivative is weakly packed in the solid state based on the PIXEL method’s lattice energy calculation.Metal nanozymes hold promise for chemical and biological applications, and their implementation relies on high catalytic efficiency and stability. Using the metal-organic framework as an ideal carrier for well-dispersed ultra-small metal nanoparticles (NPs) is beneficial for improving the catalytic efficiency of nanozymes. In this study, a zirconium-based metal organic framework (UiO-66) with good chemical stability and high porosity was synthesized and used to construct Pt/UiO-66 nanocomposites. The percentage of Pt in UiO-66 can be tuned easily by adjusting the feeding amount of PtCl42-. Because of the confinement effect of mesopores, the Pt particles with an average diameter of 3.8 nm are formed and dispersed throughout the pores of the UiO-66 particle. The Pt/UiO-66 composites show efficient oxidase- and peroxidase-like activity. Sodiumbutyrate Both the oxidase- and peroxidase-like activities are dependent on the Pt percentage. Pt/UiO-66-6% exhibits enhanced peroxidase-like activity, ∼3.9 times higher than that of commercial Pt/C with 10 wt % Pt. We propose that the construction of Pt/UiO-66 increased the utilization efficiency and stability of Pt NPs and provided more active sites for catalytic reactions. Using the peroxidase-like activity of Pt/UiO-66, a colorimetric method that can be used for actual blood glucose detection was developed for the specific detection of glucose with a limit of detection of 0.033 mM.Development of new fluorescent molecules, especially pH-sensitive fluorescent dyes, is always in high demand due to their wide applications in various fields and the limited number of common chromophores. In this work, a family of 3-amino-N-phenylfuro[2,3-b]pyridine-2-carboxamides (AFP) was synthesized as novel fluorescent compounds. Besides fluorescence in an organic solvent, AFP 1 and AFP 2 exhibit good fluorescence properties in both acidic and basic aqueous solution, which could be explained by protonation or different conformations formed in solution. Density functional theory (DFT) calculations on the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) of various conformations were performed for further support.Conventional heavy-weight oil and gas well cement systems formulated with barite exhibit high viscosities. Additionally, the heavy-weight powder tends to settle, causing density variation and disruption in the porosity of the hardened cement cores. Studies have shown that such problems can be mitigated by controlling the particle size distribution of the cement system. The main objective of this study is to evaluate the effect of perlite powder particles on the fluid and hardened properties of barite-based cement systems. Barite heavy-weight cement slurries containing 0, 1, 2, and 3% by weight of dry cement (BWOC) of perlite powder were prepared. The rheological study was performed at a bottomhole circulating temperature (BHCT) of 150 °F and ambient pressure. An ultrasonic cement analyzer (UCA) and a high-temperature-high-pressure (HTHP) curing chamber were used to cure samples for 24 h at a bottomhole static temperature (BHST) of 292 °F and pressure of 3000 psi. Porosity measurements were performed using the nuclear magnetic resonance (NMR) technique. The results indicate that the incorporation of perlite powder into conventional barite-based heavy-weight cement slurry causes modifications in the properties of the systems. In general, the plastic viscosity decreases, while the yield point and gel strength increase with increasing perlite concentration. The reduction in plastic viscosity also reduces the pump pressure, while the increase in yield point and gel strength reduces particle sedimentation. Additionally, the compressive strength and tensile strength of hardened cement increase, while the wait-on-cement time decreases. NMR studies indicate that perlite reduces the porosity variation that exists in conventional barite-based cement systems due to the formation of stable cement systems.Chemical looping gasification (CLG) has been described as an innovative and low-cost gasification technology to convert carbonaceous fuels into synthesis gases. Oxygen carrier (OC) is the key to resolve the contradiction between rapid carbon conversion and appropriate partial oxidation of coal. At present, the solid fuel conversion in the CLG process is limited by an iron-based OC, and a copper-based carrier has difficulty in maintaining the reduction atmosphere. Hence, CuFe2O4 has been proposed as a high-performance OC because of its synergistic effect. The present study first conducted a characteristic evaluation on CuFe2O4, including the reducibility and oxygen release capacity. The results showed that the addition of copper made a great contribution to the reduction process, and the presence of ferrite better relieved the deep oxygen loss of CuFe2O4. The thermodynamic limitation and evolution behavior of CuFe2O4 in the reduction process were discussed for the simulation. An Aspen model of the CLG process with coal as the fuel and CuFe2O4 as the OC was then established and validated by the experimental data.

Facebook Pagelike Widget

Who’s Online

Profile picture of Andersson Lewis
Profile picture of Ellison Valenzuela
Profile picture of McGee Good
Profile picture of Stephenson Gleason
Profile picture of Jimenez Russo
Profile picture of Thomassen Sanders
Profile picture of Refsgaard Elliott
Profile picture of Boone Golden
Profile picture of McGinnis Pearson
Profile picture of Love Pereira
Profile picture of denssit
Profile picture of Goode MacLean
Profile picture of Grantham McCurdy
Profile picture of Munoz Warming
Profile picture of Timmons Boswell