-
Ratliff Hudson posted an update 1 day, 2 hours ago
Homeostatic matching of pre- and postsynaptic function has been observed in many species and neural structures, but whether transcriptional changes contribute to this form of trans-synaptic coordination remains unknown. To identify genes whose expression is altered in presynaptic neurons as a result of perturbing postsynaptic excitability, we applied a transcriptomics-friendly, temperature-inducible Kir2.1-based activity clamp at the first synaptic relay of the Drosophila olfactory system, a central synapse known to exhibit trans-synaptic homeostatic matching. Twelve hours after adult-onset suppression of activity in postsynaptic antennal lobe projection neurons of males and females, we detected changes in the expression of many genes in the third antennal segment, which houses the somata of presynaptic olfactory receptor neurons. These changes affected genes with roles in synaptic vesicle release and synaptic remodeling, including several implicated in homeostatic plasticity at the neuromuscular junction. Atn; and energy metabolism. Our study establishes a role for transcriptional changes in homeostatic synaptic plasticity, points to mechanistic commonalities between peripheral and central synapses, and potentially opens new opportunities for the development of connectivity-based gene expression systems.The planning and execution of head-beak movements are vital components of bird behavior. They require integration of sensory input and internal processes with goal-directed motor output. Despite its relevance, the neurophysiological mechanisms underlying action planning and execution outside of the song system are largely unknown. We recorded single-neuron activity from the associative endbrain area nidopallium caudolaterale (NCL) of two male carrion crows (Corvus corone) trained to plan and execute head-beak movements in a spatial delayed response task. The crows were instructed to plan an impending movement toward one of eight possible targets on the left or right side of a touchscreen. In a fraction of trials, the crows were prompted to plan a movement toward a self-chosen target. NCL neurons signaled the impending motion direction in instructed trials. Tuned neuronal activity during motor planning categorically represented the target side, but also specific target locations. BAY-61-3606 manufacturer As a marker of intentional mov crows, we report that NCL neurons are involved in the planning and execution of goal-directed movements. NCL neurons prospectively signaled motion directions in instructed trials, but also when the crows were free to choose a target. NCL neurons showed a target-specific sharpening of tuning with the transition from the planning to the execution period. Thus, the avian NCL not only represents high-level sensory and cognitive task components, but also transforms relevant information into action plans and motor execution.Behavioral and internal-state modulation of sensory processing has been described in several organisms. In insects, visual neurons in the optic lobe are modulated by locomotion, but the degree to which visual-motor feedback modulates these neurons remains unclear. Moreover, it also remains unknown whether self-generated and externally generated visual motion are processed differently. Here, we implemented a virtual reality system that allowed fine-scale control over visual stimulation in relation to animal motion, in combination with multichannel recording of neural activity in the medulla of a female honeybee (Apis mellifera). We found that this activity was modulated by locomotion, although, in most cases, only when the bee had behavioral control over the visual stimulus (i.e., in a closed-loop system). Moreover, closed-loop control modulated a third of the recorded neurons, and the application of octopamine (OA) evoked similar changes in neural responses that were observed in a closed loop. Additionally, i early as the medulla and ultimately impacts behavior. Moreover, blocking octopaminergic modulation further disrupted object-tracking responses. Our results suggest that the medulla is an important site for context-dependent processing of visual information and that placing the animal in a closed-loop environment may be essential to understanding its visual cognition and processing.Diagnosis of B-cell chronic lymphocytic leukemia (B-CLL) is usually straightforward, involving clinical, immunophenotypic (Matutes score), and (immuno)genetic analyses (to refine patient prognosis for treatment). CLL cases with atypical presentation (e.g., Matutes ≤ 3) are also encountered, and for these diseases, biology and prognostic impact are less clear. Here we report the genomic characterization of a case of atypical B-CLL in a 70-yr-old male patient; B-CLL cells showed a Matutes score of 3, chromosomal translocation t(14;18)(q32;q21) (BCL2/IGH), mutated IGHV, deletion 17p, and mutations in BCL2, NOTCH1 (subclonal), and TP53 (subclonal). Quite strikingly, a novel PAX5 mutation that was predicted to be loss of function was also seen. Exome sequencing identified, in addition, a potentially actionable BRAF mutation, together with novel somatic mutations affecting the homeobox transcription factor NKX2-3, known to control B-lymphocyte development and homing, and the epigenetic regulator LRIF1, which is implicated in chromatin compaction and gene silencing. Neither NKX2-3 nor LRIF1 mutations, predicted to be loss of function, have previously been reported in B-CLL. Sequencing confirmed the presence of these mutations together with BCL2, NOTCH1, and BRAF mutations, with the t(14;18)(q32;q21) translocation, in the initial diagnostic sample obtained 12 yr prior. This is suggestive of a role for these novel mutations in B-CLL initiation and stable clonal evolution, including upon treatment withdrawal. This case extends the spectrum of atypical B-CLL with t(14;18)(q32;q21) and highlights the value of more global precision genomics for patient follow-up and treatment in these patients.Neuroendocrine prostate cancer (NEPC) is a highly aggressive histologic subtype of prostate cancer associated with a poor prognosis. Its incidence is expected to increase as castration-resistant disease emerges from the widespread use of potent androgen receptor-targeting therapies, such as abiraterone and enzalutamide. Defects in homologous recombination repair genes, such as BRCA1/2, are also being increasingly detected in individuals with advanced prostate cancer. We present the case of a 65-yr-old man with a germline BRCA2 mutation who developed explosive treatment-emergent, small-cell neuroendocrine prostate cancer. He achieved a complete response to platinum-containing chemotherapy, but a limited remission duration with the use of olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, as maintenance therapy. Upon relapse, tumor genomic profiling revealed a novel 228-bp deletion in exon 11 of the BRCA2 gene. The addition of the anti-PD1 drug pembrolizumab to olaparib was ineffective. This case highlights the ongoing challenges in treating neuroendocrine prostate cancer, even in the setting of homologous recombination repair deficiency.