-
Lockhart Ulriksen posted an update 1 week ago
Moth-eye-mimicking nanoprotrusion arrays are typical bioinspired broadband antireflection patterns that improve the transmittance and visibility of optical devices by adjusting different geometrical parameters of nanostructures, such as diameter, height, shape, and periodic arrangement, and widely used in solar cells, electronic displays, and so on. Rapid, net-shape, less complicated, and low-cost fabrication of the glass-based moth-eye nanostructure array is a huge challenge. This work adopted the nanohole array template to transform the moth-eye nanostructures on the optical glass by hot embossing combined with ultrasonic-assisted demolding. To investigate the mode transition and filling behavior of the glass nanostructures when compressed into the nanoholes, we conducted a series of hot embossing tests with various processing parameters and characterized the geometrical morphology of the glass-based nanostructure array, such as height and shape. In these tests, surface defects such as nanocracks will occur when inappropriate processing parameters were applied and we evaluated the transmittance performance of defective and fine glass nanostructures and surface with no nanostructures to reveal the effect of nanostructures with different levels of quality on antireflection. This work provides an effective and environmental-friendly method for the fabrication of moth-eye nanostructure arrays with an improved antireflection performance.The single-metal atoms coordinating with the surface atoms of the support constitute the active centers of as-prepared single-atom catalysts (SACs). However, under hash electrochemical conditions, (1) supports’ surfaces may experience structural change, which turn to be distinct from those at ambient conditions; (2) during catalysis, the dynamic responses of a single atom to the attack of reaction intermediates likely change the coordination environment of a single atom. These factors could alter the performance of SACs. Herein, we investigate these issues using Mo2C(100)-supported single transition-metal (TM) atoms as model SACs toward catalyzing the oxygen reduction reaction (ORR). It is found that the Mo2C(100) surface is oxidized under ORR turnover conditions, resulting in significantly weakened bonding between single TM atoms and the Mo2C(100) surface (TM@Mo2C(100)_O* term for SAC). While the intermediate in 2 e- ORR does not change the local structures of the active centers in these SACs, the O* intermediate emerging in 4 e- ORR can damage Rh@ and Cu@Mo2C(100)_O*. Furthermore, on the basis of these findings, we propose Pt@Mo2C(100)_O* as a qualified ORR catalyst, which exhibits extraordinary 4 e- ORR activity with an overpotential of only 0.33 V, surpassing the state-of-the-art Pt(111), and thus being identified as a promising alternative to the commercial Pt/C catalyst.Single-atom catalysts (SACs) with magnetic elements as the active center have been widely exploited for efficient electrochemical conversions. Understanding the catalytic role of spin, and thus modulating the spin density of a single-atom center, is of profound fundamental interest and technological impact. Here, we synthesized ferromagnetic single Co atom catalysts on TaS2 monolayers (Co1/TaS2) as a model system to explore the spin-activity correlation for the oxygen evolution reaction (OER). A single Co atom adsorbed at the hollow site (CoHS) with spin-polarized electronic states serves as the active site for OER, whose spin density can be regulated by its neighboring single Co site via tuning the Co loading. Both experimental and theoretical results reveal the spin density-dependent OER activity that an optimal spin density of CoHS can be achieved with a neighboring hetero-single CoTa site (substitution of Ta by Co) for a superior OER performance, in contrast to a homo-single CoHS site, which creates an excessive spin density over vicinal CoHS. An optimized spin density of CoHS results in an optimal binding energy of oxygen species for the OER. Establishing the spin-activity correlation in SACs may create a descriptor for designing efficient magnetic SACs for renewable energy conversions.Carbon supported and nitrogen coordinated single Mn site (Mn-N-C) catalysts are the most desirable platinum group metal (PGM)-free cathode catalysts for proton-exchange membrane fuel cells (PEMFCs) due to their insignificant Fenton reactions (vs. Fe), earth abundances (vs. Co), and encouraging activity and stability. However, current Mn-N-C catalysts suffer from high overpotential due to low intrinsic activity and less dense MnN4 sites. Herein, we present a sulfur-doped Mn-N-C catalyst (Mn-N-C-S) synthesized through an effective adsorption-pyrolysis process. Using electron microscopy and X-ray absorption spectroscopy (XAS) techniques, we verify the uniform dispersion of MnN4 sites and confirm the effect of S doping on the Mn-N coordination. The Mn-N-C-S catalyst exhibits a favorable oxygen reduction reaction (ORR) activity in acidic media relative to the S-free Mn-N-C catalyst. The corresponding membrane electrode assembly (MEA) generates enhanced performance with a peak power density of 500 mW cm-2 under a realistic H2/air environment. The constant voltage tests of fuel cells confirm the much-enhanced stability of the Mn-N-C-S catalyst compared to the Fe-N-C and Fe-N-C-S catalysts. The electron microscopy and Fourier transform XAS analyses provide insights into catalyst degradation associated with Mn oxidation and agglomeration. The theoretical calculation elucidates that the promoted ORR activity is mainly attributed to the spatial effect stemmed from the repulsive interaction between the ORR intermediates and adjacent S dopants.In this paper, we have adopted a simple and etching-free method to prepare mesoporous carbon spheres in one step. Selleck VX-478 Selenium can be deposited in the internal cavity, which can avoid pulverization due to the combined effect of volume expansion and a solid-electrolyte interphase (SEI) film while charging and discharging. Therefore, the as-prepared selenium and nitrogen codoped mesoporous carbon nanosphere (Se@NMCS) composites can deliver an outstanding sodium-storage performance of 336.6 mAh g-1 at a present density of 200 mA g-1 and great long-cycling performance. For a further understanding of the Na+ storage mechanism of the Se@NMCS anode in sodium-ion batteries (SIBs), the phase evolution of the Se@NMCS anode has been explored during the charge/discharge process by conducting in situ Raman investigation.