-
Crane Stephenson posted an update 1 week ago
Several processes have been suggested for the aptitude of flavonoids to slow down the advancement or to avert the onset of Alzheimer’s pathogenesis. To enhance cognitive performance and to prevent the onset and progress of AD, the interaction of flavonoids with various signaling pathways is proposed to exert their therapeutic potential. Therefore, this review elaborates on the probable therapeutic approaches of flavonoids aimed at averting or slowing the progression of the AD pathogenesis.Colorectal cancer (CRC) is one of the most common forms of cancer. Its onset from chronic inflammation is widely accepted. Moreover, dysbiosis plays an undeniable role, thus the use of probiotics in CRC has been suggested. They exhibit both anti- and pro-inflammatory properties and restore balance in the microbiota. The aim of this study was to investigate the immunomodulatory properties of six lactobacilli with probiotic features in an in vitro model of macrophage-like cells and to test these pooled probiotics for their anti-tumour properties in a chemically induced CRC model using Wistar male rats. Upon co-culture of M1- and M2-like macrophages with lactobacilli, cytokine release (TNF-α, IL-1β, IL-18, IL-23) and phagocytic activity using fluorescent-labelled bacteria were tested. The effects of orally administered probiotics on basic cancer and immune parameters and cytokine concentration (TNF-α, IL-1β, IL-18) in colon tumours were studied. Tested lactobacilli exhibited both pro- and anti-inflammatory properties in in vitro conditions. In vivo study showed that the administration of probiotics was able to decrease multiplicity, volume and total tumour numbers, restore colon length (p less then 0.05) and increase IL-18 production (p less then 0.05) in tumour tissue. These data indicate both an immunomodulatory effect of probiotics on distinct macrophage subsets and a protective effect against chemically-induced CRC.Surgery is the only definitive treatment for degenerative cervical myelopathy (DCM), however, the degree of neurological recovery is often unpredictable. Here, we assess the utility of a multidimensional diagnostic approach, consisting of clinical, neurophysiological, and radiological parameters, to identify patients likely to benefit most from surgery. Thirty-six consecutive patients were prospectively analyzed using the modified Japanese Orthopedic Association (mJOA) score, MEPs/SSEPs and advance and conventional MRI parameters, at baseline, and 3- and 12-month postoperatively. Patients were subdivided into “normal” and “best” responders ( 0.55 was predictor of a better postoperative outcome. Overall, these results support the concept of a multidisciplinary approach in the assessment and management of DCM.BACKGROUND Multimorbidity not only affects the quality of patients’ lives, but can also bring a heavy economic burden to individuals, families and society. The purpose of this study was to reveal the connections between diseases, especially the important role each disease played in the entire multimorbidity network. METHODS A total of 1,155,734 inpatients were enrolled through multistage stratified random sampling in Jilin Province in 2017. Categorical variables were compared using the Rao-Scott-χ2 test. Weighted networks were adopted to present the complex relationships of multimorbidity. check details RESULTS The distributions of the number of diseases differed significantly by gender, age and health insurance scheme (P less then 0.001). Diseases of the respiratory system had the highest weight in multimorbidity in young people. Endocrine, nutritional and metabolic diseases and circulatory system diseases were often associated with other systemic diseases in middle aged and old people. CONCLUSIONS Multimorbidity with respiratory system diseases in young people should not be overlooked. Additionally, effective prevention efforts that target endocrine, nutritional and metabolic diseases and circulatory system diseases are needed in middle aged and old people.Microglia, the major endogenous immune cells of the central nervous system, mediate critical degenerative and regenerative responses in ischaemic stroke. Microglia become “activated”, proliferating, and undergoing changes in morphology, gene and protein expression over days and weeks post-ischaemia, with deleterious and beneficial effects. Pro-inflammatory microglia (commonly referred to as M1) exacerbate secondary neuronal injury through the release of reactive oxygen species, cytokines and proteases. In contrast, microglia may facilitate neuronal recovery via tissue and vascular remodelling, through the secretion of anti-inflammatory cytokines and growth factors (a profile often termed M2). This M1/M2 nomenclature does not fully account for the microglial heterogeneity in the ischaemic brain, with some simultaneous expression of both M1 and M2 markers at the single-cell level. Understanding and regulating microglial activation status, reducing detrimental and promoting repair behaviours, present the potential for therapeutic intervention, and open a longer window of opportunity than offered by acute neuroprotective strategies. Pharmacological modulation of microglial activation status to promote anti-inflammatory gene expression can increase neurogenesis and improve functional recovery post-stroke, based on promising preclinical data. Cell-based therapies, using preconditioned microglia, are of interest as a method of therapeutic modulation of the post-ischaemic inflammatory response. Currently, there are no clinically-approved pharmacological options targeting post-ischaemic inflammation. A major developmental challenge for clinical translation will be the selective suppression of the deleterious effects of microglial activity after stroke whilst retaining (or enhancing) the neurovascular repair and remodelling responses of microglia.The aim of present study was to obtain novel fibrous materials based on cellulose derivative and polyethylene glycol loaded with natural biologically active compound quercetin by electrospinning. Several methods including scanning electron microscopy (SEM), IR spectroscopy, X-ray diffraction analysis (XRD), water contact angle measurements, differential scanning calorimetry (DSC), and UV-VIS spectroscopy were utilized to characterize the obtained materials. The incorporation of polyethylene glycol in the fibrous material resulted in increased hydrophilicity and burst release of quercetin from the fibers. Quercetin-containing fibrous mats exhibited high antioxidant activity as estimated by DPPH free radical scavenging method. In vitro tests with HeLa tumor cells and SH-4 melanoma skin cells were performed in order to determine the cytotoxicity of the novel materials. It was found that the fibrous CA/PEG/QUE materials exhibited high cytotoxic effect against both cell lines. Therefore, the novel polymeric materials containing quercetin are promising candidates for biomedical and pharmaceutical applications.