Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Helbo Lin posted an update 3 days, 21 hours ago

    The importance of spin fluctuations and short-range order in the rare earth and transition metal lattices in garnets resulting in large magnetocaloric effect is brought out through this work.Bottom-up-synthesized graphene nanoribbons (GNRs) with excellent electronic properties are promising materials for energy storage systems. BAY 85-3934 research buy Herein, we report bottom-up-synthesized GNR films employed as electrode materials for micro-supercapacitors (MSCs). The micro-device delivers an excellent volumetric capacitance and an ultra-high power density. The electrochemical performance of MSCs could be correlated with the charge carrier mobility within the differently employed GNRs, as determined by pump-probe terahertz spectroscopy studies.Generation of electron-hole pairs via symmetry-breaking charge separation (SB-CS) in photoexcited assemblies of organic chromophores is a potentially important route to enhancing the open-circuit voltage of organic photovoltaics. While most reports of SB-CS have focused on molecular dimers in solution where the environmental polarity can be manipulated, here, we investigate SB-CS in polycrystalline thin films of 1,6,7,12-tetra(phenoxy)perylene-3,49,10-bis(dicarboximide) having either n-octyl groups (octyl-tpPDI) or hydrogen atoms (H-tpPDI) attached to its imide nitrogen atoms. Structural analyses using various X-ray techniques reveal that while both compounds show π-π stacking in thin films, H-tpPDI is more slip-stacked than octyl-tpPDI and has intermolecular hydrogen bonds to its neighboring molecules. Transient absorption spectroscopy shows that octyl-tpPDI exhibits strong mixing between its singlet excited state and a charge transfer state, yielding an excimer-like state, while H-tpPDI undergoes nearly quantitative SB-CS, making the latter a promising candidate for use in organic photovoltaic devices.The relation between redox activity and coordination geometry in CuIN4 complexes indicates that more flattened structures tend to be more reactive. Such a preorganization of the ligand confers to the complex geometries closer to a transition state, which has been termed the “entatic” state in metalloproteins, more recently extending this concept for copper complexes. However, many aspects of the redox chemistry of CuI complexes cannot be explained only by flattening. For instance, the role of ligand flexibility in this context is an open debate nowadays. To analyze this point, we studied oxidation properties of a series of five monometallic CuI Schiff-base complexes, [CuI(L n )]+, which span a range of geometries from a distorted square planar (n = 3) to a distorted tetrahedron (n = 6, 7). This stepped control of the structure around the CuI atom allows us to explore the effect of the flattening distortion on both the electronic and redox properties through the series. Experimental studies were complemented by a theoretical analysis based on density functional theory calculations. As expected, oxidation was favored in the flattened structures, spanning a broad potential window of 370 mV for the complete series. This orderly behavior was tested in the reductive dehalogenation reaction of tetrachloroethane (TCE). Kinetic studies show that CuI oxidation by TCE is faster as the flattening distortion is higher and the oxidation potentials of the metal are lower. However, the most reactive complex was not the more planar, contradicting the trend expected from oxidation potentials. The origin of this irregularity is related to ligand flexibility and its connection with the atom/electron transfer reaction path, highlighting the need to consider effects beyond flattening distortion to better understand the reactivity of this important class of complexes.The structure and bonding of a series of selected phosphine-protected gold clusters (Au n -P) of nuclearity varying from n = 6 to 13 were investigated by density functional theory (DFT) calculations and compared to those of the hypothetical homologues in which phosphines were replaced by N-heterocyclic carbene (NHC) analogues (Au n -C). Both the Au n -P and Au n -C series exhibit similar stabilities and structural features, except for n = 6, where some differences are noted. The NHC ligands are found to be even slightly more strongly bonded to the gold core (by a few kilocalories per mole per ligand) than phosphines. Investigation of the optical properties of both series using time-dependent DFT calculations indicates similarities in the nature and energies of the UV-vis optical transitions and, consequently, relatively similar shapes of the simulated spectra, with a general blue-shift tendency when going from Au n -P to Au n -C. The fluorescence behavior observed experimentally for some of the Au n -P species is expected to occur also for their Au n -C analogues, which can be extended to other carbene-ligand-protected nanoclusters. Our results show that it should be possible to stabilize gold clusters with NHC ligands, in relation to the seminal Au13-ligand-protected core, offering novel building blocks for the design of nanostructured materials with various properties.Atmospheric pressure plasma jets generate reactive oxygen and nitrogen species (RONS) in liquids and biological media, which find application in the new area of plasma medicine. These plasma-treated liquids were demonstrated recently to possess selective properties on killing cancer cells and attracted attention toward new plasma-based cancer therapies. These allow for local delivery by injection in the tumor but can be quickly washed away by body fluids. By confining these RONS in a suitable biocompatible delivery system, great perspectives can be opened in the design of novel biomaterials aimed for cancer therapies. Gelatin solutions are evaluated here to store RONS generated by atmospheric pressure plasma jets, and their release properties are evaluated. The concentration of RONS was studied in 2% gelatin as a function of different plasma parameters (treatment time, nozzle distance, and gas flow) with two different plasma jets. Much higher production of reactive species (H2O2 and NO2-) was revealed in the polymer solution than in water after plasma treatment.

Facebook Pagelike Widget

Who’s Online

Profile picture of Hutchinson Porterfield
Profile picture of palermo2
Profile picture of Preston Day
Profile picture of MacDonald Anker