-
Dickens Slattery posted an update 5 hours, 51 minutes ago
Soluble non-reactive phosphorus (sNRP), such as inorganic polyphosphates and organic P, is not effectively removed by conventional physicochemical processes. This can impede water resource reclamation facilities’ ability to meet stringent total P regulations. This study investigated a UV/H2O2 advanced oxidation process (AOP) for converting sNRP to the more readily removable/recoverable soluble reactive P (sRP), or orthophosphate, form. Synthetic water spiked with four sNRP compounds (beta-glycerol phosphate, phytic acid, triphosphate, and hexa-meta phosphate) at varying H2O2 concentration, UV fluence, pH, and temperature was initially tested. These compounds represent simple, complex, organic, and inorganic forms of sNRP potentially found in wastewater. The efficiency of sNRP to sRP conversion depended on whether the sNRP compound was organic or inorganic and the complexity of its chemical structure. Using 1 mM H2O2 and 0.43 J/cm2 (pH 7.5, 22 °C), conversion of the simple organic beta-glycerol phosphate to sRP was 38.1 ± 2.9%, which significantly exceeded the conversion of the other sNRP compounds. Although conversion was achieved, the electrical energy per order (EEO) was very high at 5.2 × 103 ± 5.2 × 102 kWh/m3. Actual municipal wastewater secondary effluent, with sNRP accounting for 15% of total P, was also treated using UV/H2O2. selleck products No wastewater sNRP to sRP conversion was observed, ostensibly due to interference from wastewater constituents. Wastewater utilities that have difficulty meeting stringent P levels might be able to target simple organic sNRP compounds, though alternative processes beyond UV/H2O2 need to be explored to overcome interference from wastewater constituents and target more complex organic and inorganic sNRP compounds.Aluminium (Al), not essential for biological activities, accumulates in the tissues. It exerts toxic effects on the nervous system, inducing in humans’ irreversible cognitive impairment. In this study, a cluster sampling method was used to observe the cognitive function of long-term occupational Al-exposed workers in a large Al factory, and determine the expression of peripheral blood tumour necrosis factor receptor 1 (TNFR1), receptor-interacting protein 1 (RIP1), and RIP3. TNF-alpha, expressed in blood macrophages and microglia, with its receptors TNFR1, TR1 and TR3, enhances the necroptosis of neurons. Additionally, the relationship between the expression of TNFR1, RIP1, and RIP3 in the peripheral blood of long-term occupational Al-exposed workers and changes in their cognitive function was explored. The differences in the distributions of clock drawing test (CDT) scores among the three groups were statistically significant (P less then 0.05). The results of correlation analysis showed that RIP1 and RIP3 protein contents were negatively correlated with mini-mental state examination (MMSE) and CDT scores (P less then 0.05). Plasma Al content was positively correlated with other biological indicators (P less then 0.05), and negatively correlated with MMSE and CDT scores (P less then 0.05). Results showed that RIP3 protein had an incomplete mediation effect between plasma Al content and cognitive function. This suggests that Al may affect cognitive function by influencing the expression of TNFR1, RIP1, and RIP3 in the nervous system.Carbamazepine (CBZ) antibiotic organic contamination wastewater poses a huge threat to environmental safety. An advanced oxidation technology (Fe0/PDS/US) of using ultrasound (US) enhanced zero-valent iron/potassium persulfate (Fe0/PDS) can remove CBZ effectively. The optimal reaction conditions were determined by exploring the effect of single-factor experimental conditions such as ultrasonic power, ultrasonic frequency, CBZ concentration, solution pH, PDS dosage, and Fe0 dosage on the removal of CBZ. In addition, we also investigated into the effect of background ions (PO43-, HCO3-, Cl- and HA) on Fe0/PDS/US and analyzed the related results. The mechanism of CBZ removal in Fe0/PDS/US were explored by analyzing CBZ removal efficiency and reaction rates, the ion concentration of S2O82-, SO42-, Fe2+ and Fe3+, pH and the active radicals. The result indicates that US can improve the efficiency of activated PDS and expand the pH range of Fe0/PDS. It has prominent performance in catalytically degrading CBZ when the pH is 10.0. SO4•-, •OH and O2•- all coexist in the Fe0/PDS/US and make contribution to CBZ removal, whereas the SO4•- plays a key role. US can greatly promotes the degradation of target pollutant CBZ by speeding up the dissolution of the outer portion of iron powder, producing sufficient amount of Fe2+ with a continuous and stable way, and better activating S2O82- to generate sufficient SO4•- radicals. The degradation of CBZ may embrace three reaction processes, in which organic intermediate products with low molecular weight and biological toxicity is produced, boosting further mineralization and biodegradation of products. The Fe0/PDS/US is of great potential application value in removal of organic pollution and environmental purification.In this paper, we present a critical review on antimicrobial nanomaterials with demonstrated potential for application as a disinfection technology in wastewater treatment. Studies involving fabrication and testing of antimicrobial nanomaterials for wastewater treatment were gathered, critically reviewed, and analyzed. Our review shows that there are only a few eligible candidate nanoparticles (NPs) (metal and metal oxide) that can adequately serve as an antimicrobial agent. Nanosilver (nAg) was the most studied and moderately understood metal NPs with proven antimicrobial activity followed by ZnO (among antimicrobial metal oxide NPs) which outperformed titania (in the absence of light) in efficacy due to its better solubility in aqueous condition. The direction of future work was found to be in the development of antimicrobial nanocomposites, since they provide more stability for antimicrobial metal and metal oxides NPs in water, thereby increasing their activity. This review will serve as an updated survey, yet touching also the fundamentals of the antimicrobial activity, with vital information for researchers planning to embark on the development of superior antimicrobial nanomaterials for wastewater treatment applications.