Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Allred Steen posted an update 7 hours, 13 minutes ago

    Fasciolosis is one of the most important parasitic diseases of livestock. The need for better control strategies gave rise to the identification of various vaccine candidates. The recombinant form of a member of the cysteine protease family, cathepsin L1 of Fasciola hepatica (FhCL1) has been a vaccine target for the past few decades since it has been shown to behave as an immunodominant antigen. However, when FhCL1 was used as vaccine, it has been observed to elicit significant protection in some trials, whereas no protection was provided in others.

    In order to improve vaccine development strategy, we conducted a linear B-cell epitope mapping of FhCL1 in sheep vaccinated with FhCL1, FhHDM, FhLAP and FhPrx plus Montanide and with significant reduction of the fluke burden, sheep vaccinated with FhCL1, FhHDM, FhLAP and FhPrx plus aluminium hydroxide and with non-significant reduction of the fluke burden, and in unvaccinated-infected sheep.

    Our study showed that the pattern and dynamic of peptide recognitiovariable outcomes of vaccination trials conducted in ruminants to date, this study adds new insights to improve strategies of vaccine development.

    Free-ranging chickens are often infected with Toxoplasma gondii and seroconvert upon infection. This indicates environmental contamination with T. gondii.

    Here, we established a bead-based multiplex assay (BBMA) using the Luminex technology for the detection of T. gondii infections in chickens. Recombinant biotinylated T. gondii surface antigen 1 (TgSAG1

    ) bound to streptavidin-conjugated magnetic Luminex beads served as antigen. Serum antibodies were detected by a fluorophore-coupled secondary antibody. Beads of differing color codes were conjugated with anti-chicken IgY or chicken serum albumin and served for each sample as an internal positive or negative control, respectively. The assay was validated with sera from experimentally and naturally infected chickens. The results were compared to those from reference methods, including other serological tests, PCRs and bioassay in mice.

    In experimentally infected chickens, the vast majority (98.5%, n = 65/66) of birds tested seropositive in the BBMA. Thih high sensitivity and specificity, which is comparable or even superior to other tests. Since assays based on this methodology allow for the simultaneous analysis of a single biological sample with respect to multiple analytes, the described assay may represent a component in future multiplex assays for broad serological monitoring of poultry and other farm animals for various pathogens.

    The TgSAG1bio-BBMA represents a suitable method for the detection of T. gondii infections in chickens with high sensitivity and specificity, which is comparable or even superior to other tests. Since assays based on this methodology allow for the simultaneous analysis of a single biological sample with respect to multiple analytes, the described assay may represent a component in future multiplex assays for broad serological monitoring of poultry and other farm animals for various pathogens.

    Spatial repellents that drive mosquitoes away from treated areas, and odour-baited traps, that attract and kill mosquitoes, can be combined and work synergistically in a push-pull system. Push-pull systems have been shown to reduce house entry and outdoor biting rates of malaria vectors and so have the potential to control other outdoor biting mosquitoes such as Aedes aegypti that transmit arboviral diseases. In this study, semi-field experiments were conducted to evaluate whether a push-pull system could be used to reduce bites from Aedes mosquitoes.

    The push and pull under investigation consisted of two freestanding transfluthrin passive emanators (FTPE) and a BG sentinel trap (BGS) respectively. The FTPE contained hessian strips treated with 5.25 g of transfluthrin active ingredient. The efficacies of FTPE and BGS alone and in combination were evaluated by human landing catch in a large semi-field system in Tanzania. We also investigated the protection of FTPE over six months. The data were analyzed usal control tool during dengue outbreaks, that does not require regular user compliance.

    The PE of the FTPE and the full push-pull are similar, indicative that bite prevention is primarily due to the activity of the FTPE. While these results are encouraging for the FTPE, further work is needed for a push-pull system to be recommended for Ae. aegypti control. PF429242 The three-month protection against Ae. aegypti bites suggests that FTPE would be a useful additional control tool during dengue outbreaks, that does not require regular user compliance.

    Breast cancer cells invading the connective tissues outside the mammary lobule or duct immerse in a reservoir of extracellular matrix (ECM) that is structurally and biochemically distinct from that of their site of origin. The ECM is a spatial network of matrix proteins, which not only provide physical support but also serve as bioactive ligands to the cells. It becomes evident that the dimensional, mechanical, structural, and biochemical properties of ECM are all essential mediators of many cellular functions. To better understand breast cancer development and cancer cell biology in native tissue environment, various tissue-mimicking culture models such as hydrogel have been developed. Collagen I (Col I) and Matrigel are the most common hydrogels used in cancer research and have opened opportunities for addressing biological questions beyond the two-dimensional (2D) cell cultures. Yet, it remains unclear whether these broadly used hydrogels can recapitulate the environmental properties of tissue ECM, and wolished the cell proliferation promoted by the non-tissue-specific hydrogel.

    The full ECM protein-based hydrogel system may serve as a biologically relevant model system to study tissue- and disease-specific pathological questions. This work provides insights into tissue matrix regulation of cancer cell biomarker expression and identification of novel therapeutic targets for the treatment of human cancers based on tissue-specific disease modeling.

    The full ECM protein-based hydrogel system may serve as a biologically relevant model system to study tissue- and disease-specific pathological questions. This work provides insights into tissue matrix regulation of cancer cell biomarker expression and identification of novel therapeutic targets for the treatment of human cancers based on tissue-specific disease modeling.

Facebook Pagelike Widget

Who’s Online

Profile picture of Espersen Terry
Profile picture of Jensby Duran
Profile picture of McLean Kok
Profile picture of Velez Riber
Profile picture of Daley Gleason
Profile picture of Sherwood Ellegaard
Profile picture of Burke Jacobs
Profile picture of Burnette Bird
Profile picture of Turner Mogensen
Profile picture of Crowder Grantham
Profile picture of Downs Upton
Profile picture of Hvidberg Pilgaard
Profile picture of Greene Harvey