-
Ritter Robertson posted an update 2 days, 7 hours ago
A bio-inspired multifunctionalized silk fibroin (BMS) was synthesized in order to mimic the interaction of nidogen with the type IV collagen and laminin of basement membranes. The designed BMS consists of a motif of laminin α-chain-derived, called IK peptide, and type IV collagen covalently bound to the silk fibroin (SF) by using EDC/NHS coupling and a Cu-free click chemistry reaction, respectively. Silk fibroin was chosen as the main component of the BMS because it is versatile and biocompatible, induces an in vivo favorable bioresponse, and moreover can be functionalized with different methods. The chemical structure of BMS was analyzed by using X-ray photoelectron spectroscopy, attenuated total reflection-Fourier transform infrared, cross-polarization magic angle spinning nuclear magnetic resonance techniques, and colorimetric assay. The SF and BMS solutions were cross-linked by sonication to form hydrogels or casted to make films in order to evaluate and compare the early adhesion and viability of MRC5 cells. BMS hydrogels were also characterized by rheological and thermal analyses.Two new platinum(II) compounds with trans-(NHC)2Pt(C≡C-C≡C-R)2 (where NHC = N-heterocyclic carbene and R = phenyl or trimethylsilyl) architecture exhibit sharp blue-green or saturated deep-blue phosphorescence with high color purity. The photoluminescence of both compounds is dominated by an intense 0-0 band with distinct but weaker vibronic progressions in both tetrahydrofuran (THF) and poly(methyl methacrylate) (PMMA) matrix. The full width at half-maximum (fwhm) of the photoluminescence of trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 are 10 nm at room temperature and 4 nm at 77 K, while the trans-(NHC)2Pt(C≡C-C≡C-phenyl)2 shows a fwhm of 14 nm at room temperature and 8 nm at 77 K. The Commission International de L’Eclairage (CIE) coordinates of trans-(NHC)2Pt(C≡C-C≡C-phenyl)2 are (0.222, 0.429) in PMMA, and trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 has a deep-blue CIE of (0.163, 0.077) in PMMA. When doped into PMMA, the phosphorescence quantum yield of the complex with trimethylsilyl-butadiyne ligand increases dramatically to 57% from 0.25% in THF, while the complex with phenyl-butadiyne ligand has similar quantum yields in PMMA (32%) and THF (37%). Organic light-emitting diodes (OLEDs) employing these two complexes as the emitters were successfully fabricated with electroluminescence that closely matches the corresponding photoluminescence. The OLEDs based on trans-(NHC)2Pt(C≡C-C≡C-trimethylsilyl)2 display highly pure deep-blue electroluminescence (fwhm = 12 nm) with CIE coordinates of (0.172, 0.086), approaching the most stringent National Television System Committee (NTSC) coordinates for “pure” blue of (0.14, 0.08).Solid-state nanopores show special potential as a new single-molecular characterization for nucleic acid assemblies and molecular machines. However, direct recognition of small dimensional species is still quite difficult due the lower resolution compared with biological pores. We recently reported a very efficient noise-reduction and resolution-enhancement mechanism via introducing high-dielectric additives (e.g., formamide) into conical glass nanopore (CGN) test buffer. Based on this advance, here, for the first time, we apply a bare CGN to directly recognize small dimensional assemblies induced by small molecules. selleck chemical Cocaine and its split aptamer (Capt assembly) are chosen as the model set. By introducing 20% formamide into CGN test buffer, high cocaine-specific distinguishing of the 113 nt Capt assembly has been realized without any covalent label or additional signaling strategies. The signal-to-background discrimination is much enhanced compared with control characterizations such as gel electrophoresis and fluorescence resonance energy transfer (FRET). As a further innovation, we verify that low-noise CGN can also enhance the resolution of small conformational/size changes happening on the side chain of large dimensional substrates. Long duplex concatamers generated from the hybridization chain reaction (HCR) are selected as the model substrates. In the presence of cocaine, low-noise CGN has sensitively captured the current changes when the 26 nt aptamer segment is assembled on the side chain of HCR duplexes. This paper proves that the introduction of the low-noise mechanism has significantly improved the resolution of the solid-state nanopore at smaller and finer scales and thus may direct extensive and deeper research in the field of CGN-based analysis at both single-molecular and statistical levels, such as molecular recognition, assembly characterization, structure identification, information storage, and target index.In this Account, we showcase site-directed Cu2+ labeling in proteins and DNA, which has opened new avenues for the measurement of the structure and dynamics of biomolecules using electron paramagnetic resonance (EPR) spectroscopy. In proteins, the spin label is assembled in situ from natural amino acid residues and a metal complex and requires no post-expression synthetic modification or purification procedures. The labeling scheme exploits a double histidine (dHis) motif, which utilizes endogenous or site-specifically mutated histidine residues to coordinate a Cu2+ complex. Pulsed EPR measurements on such Cu2+-labeled proteins potentially yield distance distributions that are up to 5 times narrower than the common protein spin label-the approach, thus, overcomes the inherent limitation of the current technology, which relies on a spin label with a highly flexible side chain. This labeling scheme provides a straightforward method that elucidates biophysical information that is costly, complicated, or simply ilabels. Looking ahead, we anticipate new combinations of MD and EPR to further our understanding of protein and DNA conformational changes, as well as working synergistically to investigate protein-DNA interactions.Ultraviolet (UV) radiation is closely related to people’s lives, but excess UV exposure has led to a series of problems. UV protection technology plays a vital role in our life. The most commonly adopted UV protection technology is to use UV-absorbing materials to make protective coatings, including sunscreen cream for human skin and sunscreen coating for materials. Conventional organic UV-protective coatings have low stability and are sensitive to heat, while inorganic UV-protective coating with highly efficient UV-protective performance usually need high processing temperatures and exhibit low transparency. Here, we report a Ti-PEG-Si cross-linked inorganic-organic hybrid material, which exhibits good UV-absorbing performance. By using these UV-absorbing materials, an efficient transparent UV-absorbing coating could be easily prepared at room temperature (298 K). The UV-absorbing coating is mainly composed of titanium and silicon connected by PEG200. PEG200 as a cross-linker can improve the UV-absorption performance of the coating and increase its visible light transmittance.