Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Ashby Wu posted an update 2 days, 8 hours ago

    Accurate estimation of speciated emissions of volatile organic compounds (VOCs) is challenging due to the complexity of both species and sources. Evaluation of the bottom-up emission inventory (EI) by atmospheric observation is needed to better understand the VOC emissions and then to control air pollutions caused by VOCs. This study conducts vertical measurements of VOCs between November 3 and 11, 2018 at the Canton Tower in the urban core of Pearl River Delta (PRD), China. A mixed layer gradient (MLG) technique is applied to the tower observation data to derive emission fluxes for individual VOC. The results show that the measured VOCs concentrations at ground level were always higher than those at the heights of 118 m and 488 m. Obvious vertical gradients of concentrations were found for VOC species, such as benzene, toluene and isoprene. The emission flux was estimated to be largest for propane (3.29 mg m-2 h-1), followed by toluene (2.55 mg m-2 h-1), isoprene (2.24 mg m-2 h-1), n-butane (2.10 mg m-2 h-1) and iso-pentane (1.73 mg m-2 h-1). The total VOC emission fluxes were around 3 times larger than those in the EI, suggesting 1.5-2 times underestimations of ozone formation potential (OFP) and secondary organic aerosol potential (SOAP) by current EI. Substantial underestimations (3-20 times) were found for C2-C5 alkanes by current EI. buy 3-Methyladenine Due to unmeasured input parameters, limited sample size and short sampling period, there are still large uncertainties (40%-117%) in the estimated emission fluxes for individual species. Whereas, this study shows that the tower observation and emission estimation using MLG method could provide useful information for better understanding vertical distributions and emission fluxes of VOCs, and pioneer in assessing the existing emission inventories at species-level and hour-level.Air pollution is among the top threats to human health and ecosystems despite the substantial decrease in anthropogenic emissions. Meanwhile, the role of ship emissions on air quality is becoming increasingly important with the growing maritime transport and less strict regulations. In this study, we modeled the air quality in Europe between 1990 and 2030 with ten-year intervals, using the regional air quality model CAMx version 6.50, to investigate the changes in the past (1990-2010) as well as the effects of different land and ship emission scenarios in the future (2020,2030). The modeled mean ozone levels decreased slightly during the first decade but then started increasing again especially in polluted areas. Results from the future scenarios suggest that by 2030 the peak ozone would decrease, leading to a decrease in the days exceeding the maximum daily 8-h average ozone (MDA8) limit values (60 ppb) by 51% in southern Europe relative to 1990. The model results show a decrease of 56% (6.3 μg m-3) in PM2.5 concentrations from 1990 to 2030 under current legislation, mostly due to a large drop in sulfate (representing up to 44% of the total PM2.5 decrease during 1990-2000) while nitrate concentrations were predicted to go down with an increasing rate (10% of total PM2.5 decrease during 1990-2000 while 36% during 2020-2030). The ship emissions if reduced according to the maximum technically feasible reduction (MTFR) scenario were predicted to contribute up to 19% of the decrease in the PM2.5 concentrations over land between 2010 and 2030. Ship emission reductions according to the MTFR scenario would lead to a decrease in the days with MDA8 exceeding EU limits by 24-28% (10-14 days) around the coastal regions. The results obtained in our study show the increasing importance of ship emission reductions, after a relatively large decrease in land emissions was achieved in Europe.The controlling processes of excessive ammonium in surface water and groundwater in the central Yangtze River Basin remain unclear. In this study, monitoring of water levels and temporal-spatial distributions of major N compounds were implemented at the large Jiangshan plain and at the local site scale in the central Yangtze River Basin. The results indicate that the recharge, movement and transformation of ammonium were controlled by hydrogeological conditions. Manure and sewage from anthropogenic activities were identified as the main source of nitrogen compounds. The nitrogen loading into aquifers were governed by water table and groundwater flow. After entering subsurface soils, nitrification and dissimilatory nitrate reduction to ammonium (DNRA) were proposed as the ammonium consumption and production mechanisms, respectively, by combining the concentrations of ammonium‑nitrogen and nitrate‑nitrogen with the corresponding isotopic compositions. These microbially mediated processes controlling transport and transformation of nitrogen compounds were influenced by the seasonally varying groundwater flow regime that changed the redox conditions in the aquifers. In the subsurface environments, ammonium was converted to nitrate when sufficient oxygen supply was available, and this process was reversed under anoxic conditions along the groundwater flow path. A conceptual model for the reactive transport of nitrogen compounds jointly controlled by the vertical groundwater flows and biogeochemical processes was proposed, which provides new insights into the genesis of high ammonium groundwater.Community variation (i.e., beta diversity) along geographical gradients is a well-known ecological pattern, but the corresponding variation in beta diversity components (e.g., species turnover and nestedness) and underlying drivers remain poorly understood. Based on two alternative approaches (that is, the beta diversity partitioning proposed by Baselga and the Local Contributions to Beta Diversity (LCBD) partitioning proposed by Legendre), we examined the patterns of beta diversity components of lacustrine benthos, from bacteria to diatoms and chironomids, in the surface sediments along a 100-m water-depth gradient in Lugu Lake. We further quantified the relative importance of spatial, environmental and biotic variables in explaining water-depth patterns in beta diversity. Based on the Baselga’s framework, there was a taxonomic dependency for the patterns of beta diversity components with water-depth, showing a significant species turnover pattern for bacteria, while diatoms and chironomids showed significant nestedness.

Facebook Pagelike Widget

Who’s Online

Profile picture of Lauridsen Blalock
Profile picture of Wiggins Ohlsen
Profile picture of Roy Valentine
Profile picture of Madsen Mathews
Profile picture of Broberg Worm
Profile picture of Thomas Grau
Profile picture of Have Friis
Profile picture of Anderson Flood
Profile picture of Steen Bering
Profile picture of Walter Teague
Profile picture of Keller Klitgaard