-
Houmann Kearney posted an update 7 hours, 18 minutes ago
Moreover, multiple contrast agents have been loaded onto the nanodrug to achieve fluorescence, optoacoustic and magnetic resonance imaging for nanodrug location and disease evaluation.Cell polarization plays a crucial role in dynamic cellular events, such as cell proliferation, differentiation, and directional migration in response to diverse extracellular and intracellular signals. Although it is well known that cell polarization entails highly orchestrated intracellular molecular reorganization, the underlying mechanism of repositioning by intracellular organelles in the presence of multiple stimuli is still unclear. Here, we show that front-rear cell polarization based on the relative positions of nucleus and microtubule organizing center is precisely controlled by mechanical interactions including cellular adhesion to extracellular matrix and nucleus-cytoskeletal connections. By modulating the size and distribution of fibronectin-coated adhesive spots located in the polarized cell shape mimicking micropatterns, we monitored the alterations in cell polarity. We found that the localization of individual adhesive spots is more dominant than the cell shape itself to induce intracellular polarization. Further, the degree of cell polarization was diminished significantly by disrupting nuclear lamin A/C. We further confirm that geometrical cue-guided intracellular polarization determines directional cell migration via local activation of Cdc42. These findings provide novel insights into the role of nucleus-cytoskeletal connections in single cell polarization under a combination of physical, molecular, and genetic cues, where lamin A/C acts as a critical molecular mediator in ECM sensing and signal transduction via nucleus-cytoskeletal connection.Tick-borne pathogens (TBPs) pose a major threat to human health in Europe and the whole northern hemisphere. Despite a high prevalence of TBPs in Ixodes ricinus ticks, knowledge on the incidence of tick-borne diseases in humans infested by this tick species is limited. RI-1 datasheet This study was conducted in the year 2019 on patients who presented themselves to the Pasteur Institute Novi Sad with tick infestations. Ticks (n = 31) feeding on human (n = 30) and blood samples from the same individuals were collected by physicians and a microfluidic real-time high-throughput PCR system was used to test the genomic DNA of the samples for the presence of 27 bacterial and eight parasitic microorganisms in Serbia. Except for one Rhipicephalus sanguineus s.l. adult male tick, all ticks infesting humans were morphologically identified as I. ricinus. A high proportion of ticks (74 %, 23/31) were infected with at least one of the tested TB microorganisms, being Rickettsia helvetica (54 %, 17/31) the most common pathogen, but Borreli of TBPs with clinical impact in the Serbian cohort studied.
Diabetic foot is one of the important complications of diabetes, which is occurred due to the destructive parameters in different anatomical sites of feet. Management and monitoring of these parameters are very important to decrease or prevent foot ulcers. We aimed to develop a smart wearable device to monitor these parameters to prevent diabetic foot.
Following literature review and expert panel discussions, we considered pressure, temperature and humidity to develop the system. During these sessions, we also developed the system architecture and determined the required technologies. We also developed a mobile application. Finally, all sensors were evaluated for accurate monitoring of pressure, temperature and humidity. A standard protocol was used to evaluate each of these sensors. To this end, five people (four with diabetes and one healthy person) participated. They did a series of movements including walking, sitting, and standing. We considered the pressure measured by Pedar system as the gold stand Furthermore, it controls these parameters; as each of these parameters exceeds the defined threshold, alerts are given to patients for self-management.
This smart shoes monitors pressure, humidity, and temperature of patients’ feet and sends this data to their smart phone by the Bluetooth module. Furthermore, it controls these parameters; as each of these parameters exceeds the defined threshold, alerts are given to patients for self-management.
Patients and physicians engaging together in the electronic health record (EHR) during clinical visits may provide opportunities to both improve patient understanding and reduce medical errors.
To assess the potential impact of a patient EHR display intervention on patient quality and safety. We hypothesized that if patients had a dedicated display with an explicit invitation to follow clinicians in the EHR that this would identify several opportunities to engage patients in their care quality and safety.
Physician-patient outpatient encounters (24 patients and 8 physicians) were videotaped. Encounters took place in a hospital-based general internal medicine outpatient clinic where physicians and patients had their respective EHR monitors. Following the visits, each patient and physician was interviewed for 30 min to understand their perception of the mirrored-screen setting.
The following 7 themes were identified (a) curiosity, (b) opportunity to ask questions, (c) error identification, (d) control over medications, (e) awareness, (f) shared understanding & decision-making, (g) data privacy. These themes collectively comprised a conceptual model for how patient engagement in electronic health record use, through a dedicated second screen or an explicitly shared screen, relates to safety and quality opportunities. Therefore, the double EHR screen provides an explicit invitation for patients to join the process to influence safety.
Desired outcomes include real-time error identification and better-shared understanding and decision-making, leading to better downstream follow-through with care plans.
Desired outcomes include real-time error identification and better-shared understanding and decision-making, leading to better downstream follow-through with care plans.Pharmacological ascorbate (P-AscH-) combined with standard of care (SOC) radiation and temozolomide is being evaluated in a phase 2 clinical trial (NCT02344355) in the treatment of glioblastoma (GBM). Previously published data demonstrated that paramagnetic iron (Fe3+) catalyzes ascorbate’s oxidation to form diamagnetic iron (Fe2+). Because paramagnetic Fe3+ may influence relaxation times observed in MR imaging, quantitative MR imaging of P-AscH–induced changes in redox-active Fe was assessed as a biomarker for therapy response. Gel phantoms containing either Fe3+ or Fe2+ were imaged with T2* and quantitative susceptibility mapping (QSM). Fifteen subjects receiving P-AscH- plus SOC underwent T2* and QSM imaging four weeks into treatment. Subjects were scanned pre-P-AscH- infusion, post-P-AscH- infusion, and post-radiation (3-4 h between scans). Changes in T2* and QSM relaxation times in tumor and normal tissue were calculated and compared to changes in Fe3+ and Fe2+ gel phantoms. A GBM mouse model was used to study the relationship between the imaging findings and the labile iron pool.