Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Compton Beatty posted an update 8 hours, 34 minutes ago

    Lead optimization, a critical step in early stage drug discovery, involves making chemical modifications to a small-molecule ligand to improve properties such as binding affinity. We recently developed DeepFrag, a deep-learning model capable of recommending such modifications. Though a powerful hypothesis-generating tool, DeepFrag is currently implemented in Python and so requires a certain degree of computational expertise. To encourage broader adoption, we have created the DeepFrag browser app, which provides a user-friendly graphical user interface that runs the DeepFrag model in users’ web browsers. The browser app does not require users to upload their molecular structures to a third-party server, nor does it require the separate installation of any third-party software. We are hopeful that the app will be a useful tool for both researchers and students. It can be accessed free of charge, without registration, at http//durrantlab.com/deepfrag. The source code is also available at http//git.durrantlab.com/jdurrant/deepfrag-app, released under the terms of the open-source Apache License, Version 2.0.Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 μg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.Utilizing a customized metal cluster source in tandem with a flow tube reactor and a reflectron time-of-flight mass spectrometer, we have obtained well-resolved pure metal clusters Ptn- and observed their gas-phase reactions with a few small gas molecules. Interestingly, the remarkable inertness of Pt10- was repeatedly observed in different reactions. Meanwhile, we have determined the structure of Pt10- within a regular tetrahedron. Considering that Pt possesses 5d96s1 electron configuration, the tetrahedral Pt10- exhibits unexpected stability at neither a magic number of valence electrons nor a shell closure of geometric structure. Comprehensive theoretical calculations unveil the stability of Pt10- is significantly associated with the all-metal aromaticity. In addition to the classical total aromaticity, which is mainly due to 6s electrons, there is unique beta-aromaticity ascribed to spin-polarized beta 5d electrons pertaining to singly occupied multicenter bonds. Further, we demonstrate the superatomic feature of such a transition metal cluster Pt10-, as Pt6@Pt4-, in mimicking methane.Protein structure can be altered with heat, but models which predict denaturation show that globular proteins also spontaneously unfold at low temperatures through cold denaturation. By an analysis of the primary structure of pea protein using bioinformatic modeling, a mechanism of pea protein cold denaturation is proposed. Pea protein is then fractionated into partially purified legumin and vicilin components, suspended in ethanol, and subjected to low temperatures (-10 to -20 °C). The structural characterizations of the purified fractions are conducted through FTIR, ζ potential, dynamic light scattering, and oil binding, and these are compared to the results of commercial protein isolates. The observed structural changes suggest that pea protein undergoes changes in structure as the result of low-temperature treatments, which could lead to innovative industrial processing techniques for functionalization by low-temperature processing.Nowadays, there is much attention focusing on lead halide perovskite because of its admirable performances in optoelectronic applications. However, the notorious toxicity and long-term instability are two main factors limiting its widespread applications. The findings of this work demonstrate a facile synthesis process for novel lead-free CsAgCl2 perovskite microcrystals with no organic ligand involved. The fundamental properties of the CsAgCl2 microcrystals are revealed by applying temperature-dependent X-ray diffraction and photoluminescence measurements from 77 to 300 K. compound library chemical Furthermore, the CsAgCl2 microcrystals exhibit excellent air (60 days), thermal (100 °C), and light stability. Meanwhile, the CsAgCl2 microcrystals have shown exciting potential applications in the fields of photocatalysis and photoelectrochemistry.Observation of the free rotation of molecules in helium droplets enabled microscopic study of interaction of quantum rotors with a superfluid environment at T = 0.4 K. This work extends studies of rotation in helium to molecular cations, such as methenium, CH3+. The spectrum of the v3 band of CH3+ around 3130 cm-1 has three prominent peaks assigned to the rotational structure of the band. While the free CH3+ is an oblate top, in helium it behaves as a prolate top. This effect is ascribed to the strong binding of two He atoms along the figure axis of the ion. Our results indicate that the other He atoms within the first solvation shell remain fluxional and in disparity with the widely accepted model of a rigid He “snowball” surrounding ions.

Facebook Pagelike Widget

Who’s Online

Profile picture of Demir Korsgaard
Profile picture of Carr Benjamin
Profile picture of McLean Schroeder
Profile picture of Hanson Abbott
Profile picture of Middleton Lundsgaard
Profile picture of Lassiter Bright
Profile picture of Walls Ochoa