-
Mcconnell Byrne posted an update 1 day, 8 hours ago
Statistically significant associations were observed between exposure to inhalation anesthetics and the mean levels of aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyltransferase, serum creatinine, kidney injury molecule-1, and calcium. Under the exposure scenario described in the present study, occupational exposure to inhalation anesthetics was associated with subtle, subclinical, pre-pathologic changes in the parameters of liver and kidneys. Additionally, Alpha-glutathione-S-transferase and kidney injury molecule-1 were found to be sensitive markers for early detection of subclinical changes in the parameters of kidney and liver function in subjects who are exposed to inhalation anesthetics. Copyright © 2020 Neghab et al.CpG oligodeoxynucleotide (CpG-ODN) is a Toll-like receptor 9 (TLR9) agonist that can induce innate immune responses. In a previous study, flucloxacillin (FLUX; 100 mg/kg, gavage)-induced liver injury in mice was enhanced by co-administration of CpG-ODN (40 μg/mouse, intraperitoneally). In this study, the mechanism of CpG-ODN sensitization to FLUX-induced liver injury was further investigated in mice inhibited of Kupffer cells (KCs) function by gadolinium chloride (GdCl3; 10 mg/kg, intravenously). GdCl3-treated mice administrated with CpG-ODN and FLUX showed lower liver injury than wild-type (WT) mice treated with CpG-ODN and FLUX. Upregulation of Fas and FasL by CpG-ODN was also inhibited in GdCl3-treated mice and mitochondrial swelling in response to FLUX failed to occur regardless of pre-treatment with CpG-ODN. When FasL-mutant gld/gld mice were treated with CpG-ODN, mitochondrial swelling in response to FLUX was also inhibited. These results suggest that KCs play an essential role in liver injury induced by CpG-ODN and FLUX. CpG-ODN may activate KCs, resulting in induction of Fas/FasL-mediated apoptosis of hepatocytes. The Fas/FasL pathway may also be an upstream regulator of CpG-ODN- and FLUX-induced changes in mitochondrial permeability transition. These results enhance our understanding of the mechanism of the adjuvant effect of CpG-ODN in this mouse model of liver injury. Copyright © 2020 Gao et al.This study aimed to measure concentrations of manganese fume in breathing zone (BZ) and blood among welders to assess neurocognitive and neurobehavioral functions among them. In this study 38 welders and 27 administrative employees participated. Q16 questionnaire was used to evaluate neurobehavioral symptoms. The computerized Stroop test and Continuous Performance Test (CPT) were used to assess neurocognitive functions. Sampling and analysis of manganese fumes in the BZ and blood samples were performed according to NIOSH-7300 and NIOSH-8005 methods, respectively. Average concentration of manganese in the welders’ BZ and blood was 0.81 ± 0.21 mg/m3 and 18.33 ± 5.84 µg/l. Frequency of neurobehavioral symptoms was significantly higher in welders compared with control group. Spearman correlation test showed a moderate correlation between Mn concentrations in the BZ and blood Mn levels (rs = 0.352). There were statistical moderate and strong correlations between the frequency of neurobehavioral symptoms and manganese concentrations in the BZ (r=0.504) and blood Mn levels (r=0.643).The Pearson correlation coefficient (r=0.433-0.690) obtained on the psychological tests showed a moderate to strong correlation between manganese concentrations in the welders’ BZ and blood and some indices of the Stroop test and CPT. The results of this study can confirm the effect of manganese inhalation on creating neurobehavioral and neurocognitive impairments in welders. Copyright © 2020 Mehrifar et al.The increased incidence of invasive infections and the emerging problem of drug resistance particularly for commonly used molecules have prompted investigations for new, safe and more effective microbial agents. Actinomycetes from unexplored habitats appear as a promising source for novel bioactive compounds with a broad range of biological activities. Thus, the present study aimed to isolate effective wetland-derived actinomycetes against major pathogenic fungi and bacteria. Water samples were collected from various locations of Fetzara Lake, Algeria. Thereafter, an actinomycete designated ActiF450 was isolated using starch-casein-agar medium. The antimicrobial potential of the newly isolated actinomycete was screened using the conventional agar cylinders method on Potato Dextrose Agar (PDA) against various fungal and bacterial pathogens. A wetland-derived Streptomyces sp. Actif450 was identified as Streptomyces malaysiensis based on its physiological properties, morphological characteristics, and 16S rDNA gene sequence analysis. The antimicrobial activity of Streptomyces sp. ActiF450 showed a potent and broad spectrum activity against a range of human fungal pathogens including moulds and yeasts, such as Arthroderma vanbreuseghemii, Aspergillus fumigatus, A. niger, Candida albicans, C. glabarta, C. krusei, C. parapsilosis, Fusarium oxysporum, F. solani, Microsporum canis, Rhodotorula mucilaginous and Scodapulariopsis candida. In addition, high antibacterial activity was recorded against pathogenic staphylococci. The novel Streptomyces sp. ActiF450 may present a promising candidate for the production of new bioactive compounds with broad-spectrum antimicrobial activity. SU5416 Copyright © 2020 Benhadj et al.In a search for new antitrypanosomal agents in the Brazilian flora, the ethanol extract of the xylopodium from Aiouea trinervis (Lauraceae) exhibited in vitro activity against the epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas disease. Bioassay-guided chromatographic fractionation of the ethanol extract afforded three butanolides, isoobtusilactone A (1), epilitsenolide C2 (2), and epilitsenolide C1 (3). Butanolides 1 and 3 were more active against T. cruzi epimastigotes than the reference drug benznidazole (by 8.9-fold and 3.2-fold, respectively), while 2 proved inactive. Compounds 1 and 3 showed low cytotoxicity in mammalian Vero cells (CC50> 156 μmol L-1) and high selectivity index (SI) values for epimastigotes (SI = 56.8 and 28.6, respectively), and 1 was more selective than benznidazole (SI = 46.5). Butanolide 1 at 24 μmol L-1 also led to cell cycle alterations in epimastigote forms, and inhibited the growth of amastigote cells in more than 70 %. In silico ADMET properties of 1 were also analyzed and predicted favorable drug-like characteristics.