-
Holm Holden posted an update 3 days, 8 hours ago
such trials, on the other hand. learn more However, more research is needed before conclusions regarding effectiveness in youths can be made, particularly for services provided to systemically marginalized groups and using online text-based approaches.A quote attributed to many people, from the Nobel prize-winning Quantum physicist Niels Bohr to legendary baseball player (and philosopher) Yogi Berra states “It is difficult to make predictions, especially about the future.” As though any other prediction would matter; but this is exactly what parents want when they bring their child to the doctor for any concern, ranging from a bump or bruise to whether the child has bipolar disorder. They want the doctor to use both the science and art of medicine to answer key questions What is wrong with my child? What tests or workup is needed to figure this out? What is the best treatment for this problem? Will my child get better?Major depressive disorder (MDD) has been associated with lower mitochondrial energy production and higher oxidative stress. We investigated whether these alterations manifest in patients with current mild to moderate MDD severity. We observed no differences in mitochondrial respiration and density (i.e., citrate-synthase activity) in peripheral blood mononuclear cells and oxidative stress markers (i.e., 8-hydroxy-2′-deoxyguanosine, 8-isoprostane) in blood serum of 20 female MDD patients compared to 24 non-depressed women. Alterations in mitochondrial energy production and oxidative stress did not linearly depend on the current severity of MDD. However, biological alterations might rather manifest with higher MDD severity/chronicity and at higher age.Optic atrophy-1 (OPA1) is a dynamin-like GTPase localized to the mitochondrial inner membrane, playing key roles in inner membrane fusion and cristae maintenance. OPA1 is regulated by the mitochondrial transmembrane potential (Δψm) when Δψm is intact, long OPA1 isoforms (L-OPA1) carry out inner membrane fusion. Upon loss of Δψm, L-OPA1 isoforms are proteolytically cleaved to short (S-OPA1) isoforms by the stress-inducible OMA1 metalloprotease, causing collapse of the mitochondrial network and promoting apoptosis. Here, we show that L-OPA1 isoforms of H9c2 cardiomyoblasts are retained under loss of Δψm, despite the presence of OMA1. However, when H9c2s are differentiated to a more cardiac-like phenotype via treatment with retinoic acid (RA) in low serum media, loss of Δ ψm induces robust, and reversible, cleavage of L-OPA1 and subsequent OMA1 degradation. These findings indicate that a potent developmental switch regulates Δ ψm-sensitive OPA1 cleavage, suggesting novel developmental and regulatory mechanisms for OPA1 homeostasis.Dynamic bidirectional transport between the nucleus and the cytoplasm is critical for the regulation of many transcription factors, whose levels inside the nucleus must be tightly controlled. Efficient shuttling across the nuclear membrane is especially crucial with regard to the Hedgehog (Hh) pathway, where the transcriptional signal depends on the fine balance between the amounts of Gli protein activator and repressor forms in the nucleus. The nuclear export machinery prevents the unchecked nuclear accumulation of Gli proteins, but the mechanistic insight into this process is limited. We show that the atypical exportin Xpo7 functions as a major nuclear export receptor that actively excludes Gli2 from the nucleus and controls the outcome of Hh signaling. We show that Xpo7 interacts with several domains of Gli2 and that this interaction is modulated by SuFu, a key negative regulator of Hh signaling. Our data pave the way for a more complete understanding of the nuclear shuttling of Gli proteins and the regulation of their transcriptional activity.Opioid analgesics are elective for treating moderate to severe pain but their use is restricted by severe side effects. Signaling bias has been proposed as a viable means for improving this situation. To exploit this opportunity, continuous efforts are devoted to understand how ligand-specific modulations of receptor functions could mediate the different in vivo effects of opioids. Advances in the field have led to the development of biased agonists based on hypotheses that allocated desired and undesired effects to specific signaling pathways. However, the prevalent hypothesis associating β-arrestin to opioid side effects was recently challenged and multiple of the newly developed biased drugs may not display the superior side effects profile that was sought. Moreover, biased agonism at opioid receptors is now known to be time- and cell-dependent, which adds a new layer of complexity for bias estimation. Here, we first review the signaling mechanisms underlying desired and undesired effects of opioids. We then describe biased agonism at opioid receptors and discuss the different perspectives that support the desired and undesired effects of opioids in view of exploiting biased signaling for therapeutic purposes. Finally, we explore how signaling kinetics and cellular background can influence the magnitude and directionality of bias at those receptors.Strategies to take advantage of residual lignin from industrial processes are well regarded in the field of green chemistry and biotechnology. Quite recently, researchers transformed lignin into nanomaterials, such as nanoparticles, nanofibers, nanofilms, nanocapsules and nanotubes, attracting increasing attention from the scientific community. Lignin nanoparticles are seen as green way to use high-value renewable resources for application in different fields because recent studies have shown they are non-toxic in reasonable concentrations (both in vitro and in vivo assays), inexpensive (a waste generated in the biorefinery, for example, from the bioethanol platform) and potentially biodegradable (by fungi and bacteria in nature). Promising studies have tested lignin nanoparticles for antioxidants, UV-protectants, heavy metal absorption, antimicrobials, drugs carriers, gene delivery systems, encapsulation of molecules, biocatalysts, supercapacitors, tissue engineering, hybrid nanocomposites, wound dressing, and others.