-
Josephsen Bork posted an update 3 weeks, 4 days ago
Several studies have linked chronic typhoid infection with gallbladder carcinoma without completely understood mechanism. This study was performed in order to understand role of Salmonella in gallbladder cancer etiology.
Known Salmonella host-pathogen interactions were screened from database in addition to known gallbladder carcinoma targets. Host-pathogen interaction map of S. enterica was prepared and screened for interactions with gallbladder carcinoma targets. Further functional overrepresentation analysis was performed to understand the role of human targets involved in Salmonella host-pathogen interactions in gallbladder carcinoma.
Salmonella interact with several human proteins involved in gallbladder carcinoma. MAPK and RAC1 are the most important human proteins based on node degree value among all GBC associated interactors identified in current data search. selleck chemicals Functional over-representation analysis reveals that Salmonella can induce adenocarcinoma which constitutes 85% of gallbladder cancer.
Though, the role of MAPK/ERK and PI3K/AKT/mTOR pathway is already suggested for Salmonella mediated gallbladder cancer, but current data based approach indicate several new insight for exploration of the role of Salmonella in gallbladder cancer etiology. The results indicate about several other processes including CREB/SP-1 and BSG(CD147) signaling, that must be given consideration for understanding the role of Salmonella in gallbladder cancer.
Though, the role of MAPK/ERK and PI3K/AKT/mTOR pathway is already suggested for Salmonella mediated gallbladder cancer, but current data based approach indicate several new insight for exploration of the role of Salmonella in gallbladder cancer etiology. The results indicate about several other processes including CREB/SP-1 and BSG(CD147) signaling, that must be given consideration for understanding the role of Salmonella in gallbladder cancer.Gut microbiota has been demonstrated to play multiple crucial roles in immunity, physiology, metabolism, and health maintenance. Diarrhea was closely related to the gut microbiota, but information regarding the alterations in gut microbial composition and structure in Baer’s Pochard (Aythya baeri) with diarrhea remains scarce. Here, 16S rDNA amplicon sequencing was performed to investigate the gut microbial variability between diarrheic and healthy Baer’s Pochard. Results indicated that the gut bacterial community of diarrheic Baer’s Pochard showed a distinct decrease in alpha diversity, accompanied by evident changes in taxonomic compositions. Microbial taxonomic analysis revealed that Firmicutes, Proteobacteria and Bacteroidetes were the most dominant phyla in all the fecal samples regardless of health status. At the genus level, the differences in gut bacterial abundance between healthy and diarrheic populations were gradually observed. Specifically, the proportion of Elusimicrobia in the diarrheic Baer’s Pochard was increased in comparison with healthy populations, while Acidobacteria, Rokubacteria, Cyanobacteria and Patescibacteria were dramatically decreased. Additionally, the relative proportion of 23 bacterial genera significantly decreased in diarrheic Baer’s Pochard, whereas the relative percentage of 4 bacterial genera (Alkanindiges, Elusimicrobium, Spirosoma and Exiguobacterium) observably increased as compared to healthy populations. Taken together, the present study revealed that there were distinct differences in the gut microbial composition and diversity between the healthy and diarrheic Baer’s Pochard. Remarkably, this is the first report on the differences in the gut microbiota of Baer’s Pochard under different health states and may contribute to provide better insight into gut microbial composition and diversity of Baer’s Pochard.
Complex spinal reconstructions involving corpectomies, or osteotomies, place spinal implants at extremely high stresses that can lead to pseudoarthrosis and ultimately to rod failure, resulting in revision surgery. Current clinical options to increase the biomechanical strength of a construct include increasing rod diameter, changing rod material, or placing an additional satellite/outrigger rod on a standard two rod construct. Fundamentally, all of these constructs still rely on two longitudinal rods across the reconstruction site and are therefore at risk for rod fracture and loss of alignment. Initially described in 2006, the Dual Construct was developed to address this limitation by utilizing four distinct mechanically independent rods, which allowed for the creation of two separate, and distinct, constructs within each patient. Although there is early clinical evidence to support its efficacy, this is the first biomechanical study to compare the Dual Construct to the two-rod and two-rod with satellite truct compared to traditional two-rod and two-rod with satellite constructs. Global rod strains on primary rods cannot be reduced by simply increasing the number of satellite rods, but can only be reduce by increasing the actual number of primary rods.Co-occurrence of emerging and regulated mycotoxins in contaminated samples has been widely documented, but studies about their combined toxicity are scarce. In this report, the regulated mycotoxins deoxynivalenol, fumonisin B1 and zearalenone, and the emerging ones enniatin A, enniatin B and beauvericin were tested in SH-SY5Y human neuroblastoma cells. Their individual and binary combined effects on cell viability and mitochondrial function were evaluated. The results with individual mycotoxins revealed that deoxynivalenol and emerging mycotoxins were the most damaging to neuronal cells, presenting IC50 values between 0.35 and 2.4 μM. Interestingly, non-regulated mycotoxins triggered apoptosis by affecting to mitochondrial membrane potential. However, when regulated and non-regulated mycotoxins were binary mixed, antagonistic effects were found in all cases. Finally, cow feed and milk extracts were analysed by UHPLC-MS/MS, detecting the presence of several mycotoxins included in this study. These extracts were tested in neuroblastoma cells, and damaging effects on cell viability were found. Although binary combinations of mycotoxins produced antagonistic effects, their mixture in natural matrixes induces greater effects than expected. Therefore, it would be interesting to explore the matrix influence on mycotoxin toxicity, and to continue studying the neurotoxic mechanism of action of emerging mycotoxins, as they could be a health hazard.