Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Morton Harrington posted an update 6 days, 7 hours ago

    For roasted hybrid, the mean concentrations of all the bioactive components increased with increases in harvesting time except for tannin and vitamin C that showed a decrease at 20DAP and 27DAP. The results revealed that processing and time of harvest affect the levels of non-provitamin A carotenoids, tannins, phytic acid, Vitamin C and the colour properties of biofortified maize genotypes.Herein, we introduce a method to simultaneously photoadhere a photocrosslinkable polymer to a plasma-treated fluoropolymer while photopatterning the photocrosslinkable polymer via a single-photo-exposure as a new electrode passivation technique. Photoadhesion was determined to result from plasma-generated radicals of the plasma-treated fluoropolymer. Crystallinity of the fluoropolymer was analysed to determine the photoadhesion strength through its effects on both the formation of radicals and the etching of fluoropolymers. Passivation feasibility of simultaneous photoadhesion and photopatterning (P&P) technique were demonstrated by fabricating an Au electrocorticography electrode array and modifying the electrode with electro-deposited metallic nanoparticles. Adhesion of sputter-deposited Au to the fluoropolymer was dependent on mechanical interlocking, indicated by the formation of Au clusters which are typically influenced by the surface temperature during the sputter-deposition and the glass transition temperature of the fluoropolymer. The adhesion of Au to the fluoropolymer without an additional adhesion promotor and the proposed P&P passivation technique would help prevent detachment of the electrode and the delamination of the passivation layer in fluoropolymer-based neural electrode.Since the production of ferromagnetic graphene as an extremely important matter in spintronics has made a revolution in future technology, a great deal of efforts has recently been done to reach a simple and cost-effective method. Up to now, controlling the magnetic properties at extremely low temperature have been investigated only by adding and removing atoms in graphene lattice. In this regard, the effect of strain on the magnetic and electronic properties of graphene has been probed. Here, the ferromagnetic properties are what have been created by strain, magnetic field, and temperature along with observation of the parallel magnetic domains in ferromagnetic graphene for the first time as a great achievement. In this way, we have represented the following First, introducing three novel methods based on temperature, magnetic field, and strain for producing ferromagnetic graphene; Second, obtaining ferromagnetic graphene at room temperature by significant magnetization saturation in mass-scale; Third, probing the electronic systems and vibrational modes by Raman and IR spectroscopy; Fourth, introducing stacking and aggregation as two types of gathering process for graphene sheets; Fifth, comparing the results with leidenfrost effect-based method which the temperature, magnetic fields, and strain are simultaneously applied to graphene flakes (our previous work).Human plasma is a complex fluid, increasingly used for extracellular vesicle (EV) biomarker studies. Our aim was to find a simple EV-enrichment method for reliable quantification of EVs in plasma to be used as biomarker of disease. Plasma of ten healthy subjects was processed using sedimentation rate- (sucrose cushion ultracentrifugation-sUC) and size- (size exclusion chromatography-SEC) based methods. According to nanoparticle tracking analysis (NTA), asymmetrical flow field-flow fractionation coupled to detectors (AF4-UV-MALS), miRNA quantification, transmission electron microscopy and enzyme-linked immunosorbent assay, enrichment of EVs from plasma with sUC method lead to high purity of EVs in the samples. High nanoparticle concentrations after SEC resulted from substantial contamination with lipoproteins and other aggregates of EV-like sizes that importantly affect downstream EV quantification. Additionally, sUC EV-enrichment method linked to quantification with NTA or AF4-UV-MALS is repeatable, as the relative standard deviation of EV size measured in independently processed samples from the same plasma source was 5.4% and 2.1% when analyzed by NTA or AF4-UV-MALS, respectively. In conclusion, the sUC EV-enrichment method is compatible with reliable measurement of concentration and size of EVs from plasma and should in the future be tested on larger cohorts in relation to different diseases. This is one of the first studies using AF4-UV-MALS to quantify EVs in blood plasma, which opens new possible clinical utility for the technique.An amendment to this paper has been published and can be accessed via a link at the top of the paper.Parkinson’s Disease (PD) is the second most common neurodegenerative disorder, affecting more than 1% of the population above 60 years old with both motor and non-motor symptoms of escalating severity as it progresses. Since it cannot be cured, treatment options focus on the improvement of PD symptoms. In fact, evidence suggests that early PD intervention has the potential to slow down symptom progression and improve the general quality of life in the long term. However, the initial motor symptoms are usually very subtle and, as a result, patients seek medical assistance only when their condition has substantially deteriorated; thus, missing the opportunity for an improved clinical outcome. This situation highlights the need for accessible tools that can screen for early motor PD symptoms and alert individuals to act accordingly. SGI-110 Here we show that PD and its motor symptoms can unobtrusively be detected from the combination of accelerometer and touchscreen typing data that are passively captured during naturalon for signs of PD and which could be used to reduce the critical gap between disease onset and start of treatment.It is well documented that physical inactivity is related to weight gain and a whole host of chronic diseases. This study investigated trends of low physical activity among Iranian adolescents in urban and rural areas between 2006-2011. A total of 12,178 adolescents, aged between 15 and 19 years, participated in National Surveys of Risk Factors for Non-Communicable Diseases. Data on physical activity was obtained using the global physical activity questionnaire. A complex sample survey and multinomial logistic regression were used to model physical activity levels. The percentage of adolescents who had low levels of physical activity increased from 2006 to 2011 in both urban and rural areas. Low and moderate levels of physical activity were lower in rural girls as compared with urban girls, with a prevalence ratio of 0.59 (95% CI 0.47-0.74) and 0.59 (95% CI 0.47-0.74), respectively. The corresponding values for boys residing in rural areas compared with boys in urban areas were 0.56 (95% CI 0.43-0.75) and 0.60 (95% CI 0.

Facebook Pagelike Widget

Who’s Online

Profile picture of Sahin Hood
Profile picture of Ali Farley
Profile picture of Hassing Yildiz
Profile picture of Roberson Franco
Profile picture of palermo2
Profile picture of Duckworth Lindsey
Profile picture of Egelund Bach
Profile picture of Schmitt Christensen
Profile picture of Baird Adair
Profile picture of Wheeler Everett
Profile picture of Fallesen Tanner
Profile picture of Field Brandstrup
Profile picture of Miller Ashworth
Profile picture of Spence Workman