Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • McDougall Wilhelmsen posted an update 6 days, 8 hours ago

    Results for the effect of extraction pH and pH treatment on the functional, physicochemical, rheological and thermal characteristics of amaranth protein isolates (APIs) are reported in this study. Four amaranth protein isolates (P1, P2, P3 and P4) were prepared by varying the extraction pH (9-11). These four protein isolate samples were further treated at pH values from 3 to 9. The total protein content and purity of protein isolates were found to be higher for P1 than P2, P3 and P4 samples. The particle size of P1 was significantly (p ≤ 0.05) higher (299.68 µm) than other samples. Solubility, emulsifying capacity and stability, foaming properties, water and oil binding capacities were higher for the P1 sample treated at pH 9. Gelation characteristics like storage modulus (G’) and loss modulus (G”) were higher for P1 samples. APIs obtained at extraction pH 9 (P1) also exhibited better thermal properties in comparison with other three samples.In this study, we compared the physicochemical properties and starch structures of hybrid rice varieties with similar apparent amylose content but different taste values. In addition to the apparent amylose content, gel permeation chromatography analysis showed that the higher proportions of amylopectin short chains and relatively lower proportions of amylopectin long chains, which could lead to higher peak viscosity and breakdown value, as well as a softer and stickier texture of cooked rice, were the key factors in determining the eating quality of hybrid rice. High-performance anion-exchange chromatography analyses showed that the proportion of amylopectin short chains (degree of polymerization 6-10) and intermediate chains (degree of polymerization 13-24), which might affect the gelatinisation enthalpy and crystallinity, also contributed greatly to the eating quality of hybrid rice. Moreover, this study indicated that a greater diversity of forms and sizes of starch granules might influence the eating quality of hybrid rice.Microbial extracellular polymeric substances (EPS) significantly influence metal behavior in the environment, but the electron transfer reaction between EPS and copper that determine the speciation and fate of copper is lacking. Here, we investigated the role of EPS from Shewanella oneidensis MR-1, Bacillus subtilis, and Saccharomyces cerevisiae and its redox state in the Cu(II) reduction under anoxic conditions. Both pristine and reduced EPS mediated copper transformation from Cu(II) to Cu(I) within 10 min. The Cu(II) reduction efficiency by the reduced EPS was ten times higher than that by the pristine EPS, which could be ascribed to the varied electron transfer ability of EPS. Multiple spectroscopic results indicated that c-type cytochromes and O-/N-containing groups were effective redox moieties responsible for copper transformation. The c-type cytochromes contributed for about 80% to the overall electron flux in S. oneidensis MR-1 EPS, which was significantly higher than in B. subtilis (27%) and S. cerevisiae EPS (22%). In contrast, functional groups such as phenolic and amide, dominated Cu(II) reduction for the B. subtilis and S. this website cerevisiae EPS. This study emphasizes the significant contribution of microbial EPS that serve as reducing agents and electron transfer mediators for cupric reduction and cuprous formation in the natural environments.Considerable attention has been recently given to possible transmission of SARS-CoV-2 via water media. This review addresses this issue and examines the fate of coronaviruses (CoVs) in water systems, with particular attention to the recently available information on the novel SARS-CoV-2. The methods for the determination of viable virus particles and quantification of CoVs and, in particular, of SARS-CoV-2 in water and wastewater are discussed with particular regard to the methods of concentration and to the emerging methods of detection. The analysis of the environmental stability of CoVs, with particular regard of SARS-CoV-2, and the efficacy of the disinfection methods are extensively reviewed as well. This information provides a broad view of the state-of-the-art for researchers involved in the investigation of CoVs in aquatic systems, and poses the basis for further analyses and discussions on the risk associated to the presence of SARS-CoV-2 in water media. The examined data indicates that detection of the virus in wastewater and natural water bodies provides a potentially powerful tool for quantitative microbiological risk assessment (QMRA) and for wastewater-based epidemiology (WBE) for the evaluation of the level of circulation of the virus in a population. Assays of the viable virions in water media provide information on the integrity, capability of replication (in suitable host species) and on the potential infectivity. Challenges and critical issues relevant to the detection of coronaviruses in different water matrixes with both direct and surrogate methods as well as in the implementation of epidemiological tools are presented and critically discussed.Atmospheric deposition is the primary source of external environmental media for lead (Pb) influx in wheat grains. However, the mechanisms of Pb grain absorption remains unclear. We explored this mechanism through comparative experiments, involving defoliating leaf blades (TG) and a control group (CK) of field wheat after the anthesis stage. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis displayed that leaves and ears can directly absorb atmospheric deposition Pb through stomata. Compared with CK, the yield, grain Pb content, and grain Pb accumulation of TG wheat were significantly decreased by 13.25%, 22.10%, and 32.58%, respectively. Combined with the Pb isotope analysis, the ear had the highest contribution to grain Pb followed by leaf and root. Simultaneously, the absorption rate of grain Pb demonstrated a dynamic trend of “N” shape. Dominant contribution periods of the root, leaf, and ear organs to grain Pb accumulation were different. Unlike the root system, the contribution of the aboveground to grain Pb increased gradually, and the contribution of leaf and ear to grain Pb were mainly concentrated in the early and late filling stage, respectively. Our findings can provide a theoretical basis for the control of Pb pollution in grains.

Facebook Pagelike Widget

Who’s Online

Profile picture of Adcock Buckley
Profile picture of Arthur Corneliussen
Profile picture of Phelps Wiley
Profile picture of nawit32378
Profile picture of Gibbs Bullock
Profile picture of backlink paketleri