-
Tolstrup Rogers posted an update 6 days, 9 hours ago
Partial least squares discriminant analysis (PLS-DA) is a well-known technique for feature extraction and discriminant analysis in chemometrics. Despite its popularity, it has been observed that PLS-DA does not automatically lead to extraction of relevant features. Feature learning and extraction depends on how well the discriminant subspace is captured. In this paper, discriminant subspace learning of chemical data is discussed from the perspective of PLS-DA and a recent extension of PLS-DA, which is known as the locality preserving partial least squares discriminant analysis (LPPLS-DA). The objective is twofold (a) to introduce the LPPLS-DA algorithm to the chemometrics community and (b) to demonstrate the superior discrimination capabilities of LPPLS-DA and how it can be a powerful alternative to PLS-DA. Four chemical data sets are used three spectroscopic data sets and one that contains compositional data. Comparative performances are measured based on discrimination and classification of these data sets. To compare the classification performances, the data samples are projected onto the PLS-DA and LPPLS-DA subspaces, and classification of the projected samples into one of the different groups (classes) is done using the nearest-neighbor classifier. buy Enzalutamide We also compare the two techniques in data visualization (discrimination) task. The ability of LPPLS-DA to group samples from the same class while at the same time maximizing the between-class separation is clearly shown in our results. In comparison with PLS-DA, separation of data in the projected LPPLS-DA subspace is more well defined.Flavylium cations are synthetic analogues of anthocyanins, the natural plant pigments that are responsible for the majority of the red, blue, and purple colors of flowers, fruits, and leaves. Unlike anthocyanins, the properties and reactivity of flavylium cations can be manipulated by the nature and position of substituents on the flavylium cation chromophore. Currently, the most promising strategies for stabilizing the color of anthocyanins and flavylium cations appear to be to intercalate and/or adsorb them on solid surfaces and/or in confined spaces. We report here that hybrid pigments with improved thermal stability, fluorescence, and attractive colors are produced by the cation-exchange-mediated adsorption of flavylium cations (FL) on two synthetic clays, the mica-montmorillonite SYn-1, and the laponite SYnL-1. Compared to the FL/SYn-1 hybrid pigments, the FL/SYnL-1 pigments exhibited improved thermal stability as judged by color retention, better preferential adsorption of the cationic form of FL1 at neutral to mildly basic pH (pH 7-8), and lower susceptibility to color changes at pH 10. Although both clays adsorb the cationic form on their external surfaces, SYnL-1 gave more evidence of adsorption in the interlayer regions of the clay. This interlayer adsorption appears to be the contributing factor to the better properties of the FL/SYnL-1 hybrid pigments, pointing to this clay to be a promising inorganic matrix for the development of brightly colored, thermally more stable hybrid pigments based on cationic analogues of natural plant pigments.Biosensors that can accurately and rapidly detect bacterial concentrations in solution are important for potential applications such as assessing drinking water safety. Meanwhile, quantum dots have proven to be strong candidates for biosensing applications in recent years because of their strong light emission properties and their ability to be modified with a variety of functional groups for the detection of different analytes. Here, we investigate the use of conjugated carboxylated graphene quantum dots (CGQDs) for the detection of Escherichia coli using a biosensing assay that focuses on measuring changes in fluorescence intensity. We have further developed this assay into a novel, compact, field-deployable biosensor focused on rapidly measuring changes in absorbance to determine E. coli concentrations. Our CGQDs were conjugated with cecropin P1, a naturally produced antibacterial peptide that facilitates the attachment of CGQDs to E. coli cells; to our knowledge, this is the first instance of cecropin P1 being used as a biorecognition element for quantum dot biosensors. As such, we confirm the structural modification of these conjugated CGQDs in addition to analyzing their optical characteristics. Our findings have the potential to be used in situations where rapid, reliable detection of bacteria in liquids, such as drinking water, is required, especially given the low range of E. coli concentrations (103 to 106 CFU/mL) within which our two biosensing assays have collectively been shown to function.We report the investigation of dicopper(II) bistren cryptate, containing naphthyl spacers between the tren subunits, as a receptor for polycarboxylates in neutral aqueous solution. An indicator displacement assay for dicarboxylates was also developed by mixing the azacryptate with the fluorescent indicator 5-carboxyfluorescein in a 501 molar ratio. Fluorimetric studies showed a significant restoration of fluorophore emission upon addition of fumarate anions followed by succinate and isophthalate. The introduction of hexyl chains on the naphthalene groups created a novel hydrophobic cage; the corresponding dicopper complex was investigated as an extractant for dicarboxylates from neutral water into dichloromethane. The liquid-liquid extraction of succinate-as a model anion-was successfully achieved by exploiting the high affinity of this anionic guest for the azacryptate cavity. Extraction was monitored through the changes in the UV-visible spectrum of the dicopper complex in dichloromethane and by measuring the residual concentration of succinate in the aqueous phase by HPLC-UV. The successful extraction was also confirmed by 1H-NMR spectroscopy. Considering the relevance of polycarboxylates in biochemistry and in the environmental field, e.g., as waste products of industrial processes, our results open new perspectives for research in all contexts where recognition, sensing, or extraction of polycarboxylates is required.