Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Bateman Mcfarland posted an update 4 days, 10 hours ago

    Tropical mountain forests contribute disproportionately to terrestrial biodiversity but little is known about insect diversity in the canopy and how it is distributed between tree species. We sampled tree-specific arthropod communities from 28 trees by canopy fogging and analysed beetle communities which were first morphotyped and then identified by their DNA barcodes. Our results show that communities from forests at 1100 and 1700 m a.s.l. are almost completely distinct. Diversity was much lower in the upper forest while community structure changed from many rare, less abundant species to communities with a pronounced dominance structure. We also found significantly higher beta-diversity between trees at the lower than higher elevation forest where community similarity was high. Comparisons on tree species found at both elevations reinforced these results. There was little species overlap between sites indicating limited elevational ranges. Furthermore, we exploited the advantage of DNA barcodes to patterns of haplotype diversity in some of the commoner species. Our results support the advantage of fogging and DNA barcodes for community studies and underline the need for comprehensive research aimed at the preservation of these last remaining pristine forests.Unimolecular dual agonists for the glucagon-like peptide 1 receptor (GLP1R) and glucagon receptor (GCGR) are emerging as a potential new class of important therapeutics in type 2 diabetes (T2D). Reliable and quantitative assessments of in vivo occupancy on each receptor would improve the understanding of the efficacy of this class of drugs. In this study we investigated the target occupancy of the dual agonist SAR425899 at the GLP1R in pancreas and GCGR in liver by Positron Emission Tomography/Computed Tomography (PET/CT). Patients with T2D were examined by [68Ga]Ga-DO3A-Tuna-2 and [68Ga]Ga-DO3A-Exendin4 by PET, to assess the GCGR in liver and GLP1R in pancreas, respectively. Follow up PET examinations were performed after 17 (GCGR) and 20 (GLP-1R) days of treatment with SAR425899, to assess the occupancy at each receptor. Six out of 13 included patients prematurely discontinued the study due to adverse events. SAR425899 at a dose of 0.2 mg daily demonstrated an average GCGR occupancy of 11.2 ± 14.4% (SD) in N = 5 patients and a GLP1R occupancy of 49.9 ± 13.3%. Fasting Plasma Glucose levels (- 3.30 ± 1.14 mmol/L) and body weight (- 3.87 ± 0.87%) were lowered under treatment with SAR425899. In conclusion, SAR425899 demonstrated strong interactions at the GLP1R, but no clear occupancy at the GCGR. The study demonstrates that quantitative target engagement of dual agonists can be assessed by PET.An amendment to this paper has been published and can be accessed via a link at the top of the paper.The precise timing of neuronal activity is critical for normal brain function. In weakly electric fish, the medullary pacemaker network (PN) sets the timing for an oscillating electric organ discharge (EOD) used for electric sensing. This network is the most precise biological oscillator known, with sub-microsecond variation in oscillator period. The PN consists of two principle sets of neurons, pacemaker and relay cells, that are connected by gap junctions and normally fire in synchrony, one-to-one with each EOD cycle. However, the degree of gap junctional connectivity between these cells appears insufficient to provide the population averaging required for the observed temporal precision of the EOD. This has led to the hypothesis that individual cells themselves fire with high precision, but little is known about the oscillatory dynamics of these pacemaker cells. As a first step towards testing this hypothesis, we have developed a biophysical model of a pacemaker neuron action potential based on experimental recordings. We validated the model by comparing the changes in oscillatory dynamics produced by different experimental manipulations. Our results suggest that this relatively simple model can capture a large range of channel dynamics exhibited by pacemaker cells, and will thus provide a basis for future work on network synchrony and precision.Urban populations are often simultaneously exposed to air pollution and environmental noise, which are independently associated with cardiovascular disease. Few studies have examined acute physiologic responses to both air and noise pollution using personal exposure measures. We conducted a repeated measures panel study of air pollution and noise in 46 non-smoking adults in Toronto, Canada. Data were analyzed using linear mixed-effects models and weighted cumulative exposure modeling of recent exposure. click here We examined acute changes in cardiovascular health effects of personal (ultrafine particles, black carbon) and regional (PM2.5, NO2, O3, Ox) measurements of air pollution and the role of personal noise exposure as a confounder of these associations. We observed adverse changes in subclinical cardiovascular outcomes in response to both air pollution and noise, including changes in endothelial function and heart rate variability (HRV). Our findings show that personal noise exposures can confound associations for air pollutants, particularly with HRV, and that impacts of air pollution and noise on HRV occur soon after exposure. Thus, both noise and air pollution have a measurable impact on cardiovascular physiology. Noise should be considered alongside air pollution in future studies to elucidate the combined impacts of these exposures in urban environments.We report a low noise, broadband, ultrafast Thulium/Holmium co-doped all-fiber chirped pulse amplifier, seeded by an Erbium-fiber system spectrally broadened via coherent supercontinuum generation in an all-normal dispersion photonic crystal fiber. The amplifier supports a – 20 dB bandwidth of more than 300 nm and delivers high quality 66 fs pulses with more than 70 kW peak power directly from the output fiber. The total relative intensity noise (RIN) integrated from 10 Hz to 20 MHz is 0.07%, which to our knowledge is the lowest reported RIN for wideband ultrafast amplifiers operating at 2 µm to date. This is achieved by eliminating noise-sensitive anomalous dispersion nonlinear dynamics from the spectral broadening stage. In addition, we identify the origin of the remaining excess RIN as polarization modulational instability (PMI), and propose a route towards complete elimination of this excess noise. Hence, our work paves the way for a next generation of ultra-low noise frequency combs and ultrashort pulse sources in the 2 µm spectral region that rival or even outperform the excellent noise characteristics of Erbium-fiber technology.

Facebook Pagelike Widget

Who’s Online

Profile picture of Thurston Stern
Profile picture of Barlow Cline
Profile picture of Ibsen Rhodes
Profile picture of MacKay Lysgaard
Profile picture of Jackson Due
Profile picture of palermo2
Profile picture of Davenport Hjorth
Profile picture of Elliott Kruse
Profile picture of Ford Bloch
Profile picture of Justice Fraser
Profile picture of Dideriksen Clarke
Profile picture of Haugaard McCullough
Profile picture of Harrell Mccullough
Profile picture of Watts Prince
Profile picture of Thisted Bentsen