-
Bragg Harvey posted an update 4 days, 9 hours ago
Accurate quantification of global land evapotranspiration is necessary for understanding variability in the global water cycle, which is expected to intensify under climate change1-3. Current global evapotranspiration products are derived from a variety of sources, including models4,5, remote sensing6,7 and in situ observations8-10. However, existing approaches contain extensive uncertainties; for example, relating to model structure or the upscaling of observations to a global level11. As a result, variability and trends in global evapotranspiration remain unclear12. Here we show that global land evapotranspiration increased by 10 ± 2 per cent between 2003 and 2019, and that land precipitation is increasingly partitioned into evapotranspiration rather than runoff. Our results are based on an independent water-balance ensemble time series of global land evapotranspiration and the corresponding uncertainty distribution, using data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GRACE-FO) satellites13. Variability in global land evapotranspiration is positively correlated with El Niño-Southern Oscillation. LF3 The main driver of the trend, however, is increasing land temperature. Our findings provide an observational constraint on global land evapotranspiration, and are consistent with the hypothesis that global evapotranspiration should increase in a warming climate.The phase behaviour of warm dense hydrogen-helium (H-He) mixtures affects our understanding of the evolution of Jupiter and Saturn and their interior structures1,2. For example, precipitation of He from a H-He atmosphere at about 1-10 megabar and a few thousand kelvin has been invoked to explain both the excess luminosity of Saturn1,3, and the depletion of He and neon (Ne) in Jupiter’s atmosphere as observed by the Galileo probe4,5. But despite its importance, H-He phase behaviour under relevant planetary conditions remains poorly constrained because it is challenging to determine computationally and because the extremes of temperature and pressure are difficult to reach experimentally. Here we report that appropriate temperatures and pressures can be reached through laser-driven shock compression of H2-He samples that have been pre-compressed in diamond-anvil cells. This allows us to probe the properties of H-He mixtures under Jovian interior conditions, revealing a region of immiscibility along the Hugoniot. A clear discontinuous change in sample reflectivity indicates that this region ends above 150 gigapascals at 10,200 kelvin and that a more subtle reflectivity change occurs above 93 gigapascals at 4,700 kelvin. Considering pressure-temperature profiles for Jupiter, these experimental immiscibility constraints for a near-protosolar mixture suggest that H-He phase separation affects a large fraction-we estimate about 15 per cent of the radius-of Jupiter’s interior. This finding provides microphysical support for Jupiter models that invoke a layered interior to explain Juno and Galileo spacecraft observations1,4,6-8.Human mobility impacts many aspects of a city, from its spatial structure1-3 to its response to an epidemic4-7. It is also ultimately key to social interactions8, innovation9,10 and productivity11. However, our quantitative understanding of the aggregate movements of individuals remains incomplete. Existing models-such as the gravity law12,13 or the radiation model14-concentrate on the purely spatial dependence of mobility flows and do not capture the varying frequencies of recurrent visits to the same locations. Here we reveal a simple and robust scaling law that captures the temporal and spatial spectrum of population movement on the basis of large-scale mobility data from diverse cities around the globe. According to this law, the number of visitors to any location decreases as the inverse square of the product of their visiting frequency and travel distance. We further show that the spatio-temporal flows to different locations give rise to prominent spatial clusters with an area distribution that follows Zipf’s law15. Finally, we build an individual mobility model based on exploration and preferential return to provide a mechanistic explanation for the discovered scaling law and the emerging spatial structure. Our findings corroborate long-standing conjectures in human geography (such as central place theory16 and Weber’s theory of emergent optimality10) and allow for predictions of recurrent flows, providing a basis for applications in urban planning, traffic engineering and the mitigation of epidemic diseases.Atomically defined assemblies of dye molecules (such as H and J aggregates) have been of interest for more than 80 years because of the emergence of collective phenomena in their optical spectra1-3, their coherent long-range energy transport, their conceptual similarity to natural light-harvesting complexes4,5, and their potential use as light sources and in photovoltaics. Another way of creating versatile and controlled aggregates that exhibit collective phenomena involves the organization of colloidal semiconductor nanocrystals into long-range-ordered superlattices6. Caesium lead halide perovskite nanocrystals7-9 are promising building blocks for such superlattices, owing to the high oscillator strength of bright triplet excitons10, slow dephasing (coherence times of up to 80 picoseconds) and minimal inhomogeneous broadening of emission lines11,12. So far, only single-component superlattices with simple cubic packing have been devised from these nanocrystals13. Here we present perovskite-type (ABO3) binary and ternary nanocrystal superlattices, created via the shape-directed co-assembly of steric-stabilized, highly luminescent cubic CsPbBr3 nanocrystals (which occupy the B and/or O lattice sites), spherical Fe3O4 or NaGdF4 nanocrystals (A sites) and truncated-cuboid PbS nanocrystals (B sites). These ABO3 superlattices, as well as the binary NaCl and AlB2 superlattice structures that we demonstrate, exhibit a high degree of orientational ordering of the CsPbBr3 nanocubes. They also exhibit superfluorescence-a collective emission that results in a burst of photons with ultrafast radiative decay (22 picoseconds) that could be tailored for use in ultrabright (quantum) light sources. Our work paves the way for further exploration of complex, ordered and functionally useful perovskite mesostructures.