-
Mcneil Kvist posted an update 2 days, 6 hours ago
obots.This article reports on two studies that aimed to evaluate the effective impact of educational robotics in learning concepts related to Physics and Geography. The reported studies involved two courses from an upper secondary school and two courses from a lower secondary school. Upper secondary school classes studied topics of motion physics, and lower secondary school classes explored issues related to geography. In each grade, there was an “experimental group” that carried out their study using robotics and cooperative learning and a “control group” that studied the same concepts without robots. Students in both classes were subjected to tests before and after the robotics laboratory, to check their knowledge in the topics covered. Our initial hypothesis was that classes involving educational robotics and cooperative learning are more effective in improving learning and stimulating the interest and motivation of students. As expected, the results showed that students in the experimental groups had a far better understanding of concepts and higher participation to the activities than students in the control groups.We present a reinforcement learning-based (RL) control scheme for trajectory tracking of fully-actuated surface vessels. The proposed method learns online both a model-based feedforward controller, as well an optimizing feedback policy in order to follow a desired trajectory under the influence of environmental forces. The method’s efficiency is evaluated via simulations and sea trials, with the unmanned surface vehicle (USV) ReVolt performing three different tracking tasks The four corner DP test, straight-path tracking and curved-path tracking. The results demonstrate the method’s ability to accomplish the control objectives and a good agreement between the performance achieved in the Revolt Digital Twin and the sea trials. Finally, we include an section with considerations about assurance for RL-based methods and where our approach stands in terms of the main challenges.In this experiment, we aimed to measure the conscious internal representation of one’s body appearance and allow the participants to compare this to their ideal body appearance and to their real body appearance. We created a virtual representation of the internal image participants had of their own body shape. We also created a virtual body corresponding to the internal representation they had of their ideal body shape, and we built another virtual body based on their real body measures. Selleck MK571 Participants saw the three different virtual bodies from an embodied first-person perspective and from a third-person perspective and had to evaluate the appearance of those virtual bodies. We observed that female participants evaluated their real body as more attractive when they saw it from a third-person perspective, and that their level of body dissatisfaction was lower after the experimental procedure. We believe that third-person perspective allowed female participants to perceive their real body shape without applying the negative prior beliefs usually associated to the “self”, and that this resulted in a more positive evaluation of their body shape. We speculate that this method could be applied with patients suffering from eating disorders, by making their body perception more realistic and therefore improve their body satisfaction.In this article we investigate the role of interactive haptic-enabled tangible robots in supporting the learning of cursive letter writing for children with attention and visuomotor coordination issues. We focus on the two principal aspects of handwriting that are linked to these issues Visual perception and visuomotor coordination. These aspects, respectively, enhance two features of letter representation in the learner’s mind in particular, namely the shape (grapheme) and the dynamics (ductus) of the letter, which constitute the central learning goals in our activity. Building upon an initial design tested with 17 healthy children in a preliminary school, we iteratively ported the activity to an occupational therapy context in 2 different therapy centers, in the context of 3 different summer school camps involving a total of 12 children having writing difficulties. The various iterations allowed us to uncover insights about the design of robot-enhanced writing activities for special education, specifically highlighting the importance of ease of modification of the duration of an activity as well as of adaptable frequency, content, flow and game-play and of providing a range of evaluation test alternatives. Results show that the use of robot-assisted handwriting activities could have a positive impact on the learning of the representation of letters in the context of occupational therapy (V = 1, 449, p less then 0.001, r = 0.42). Results also highlight how the design changes made across the iterations affected the outcomes of the handwriting sessions, such as the evaluation of the performances, monitoring of the performances, and the connectedness of the handwriting.Robots are promising tools for promoting engagement of autistic children in interventions and thereby increasing the amount of learning opportunities. However, designing deliberate robot behavior aimed at engaging autistic children remains challenging. Our current understanding of what interactions with a robot, or facilitated by a robot, are particularly motivating to autistic children is limited to qualitative reports with small sample sizes. Translating insights from these reports to design is difficult due to the large individual differences among autistic children in their needs, interests, and abilities. To address these issues, we conducted a descriptive study and report on an analysis of how 31 autistic children spontaneously interacted with a humanoid robot and an adult within the context of a robot-assisted intervention, as well as which individual characteristics were associated with the observed interactions. For this analysis, we used video recordings of autistic children engaged in a robot-assisment and facilitating more learning opportunities.In this paper we describe the control approaches tested in the improved version of an existing soft robotic neck with two Degrees Of Freedom (DOF), able to achieve flexion, extension, and lateral bending movements similar to those of a human neck. The design is based on a cable-driven mechanism consisting of a spring acting as a cervical spine and three servomotor actuated tendons that let the neck to reach all desired postures. The prototype was manufactured using a 3D printer. Two control approaches are proposed and tested experimentally a motor position approach using encoder feedback and a tip position approach using Inertial Measurement Unit (IMU) feedback, both applying fractional-order controllers. The platform operation is tested for different load configurations so that the robustness of the system can be checked.