-
Coates Hunt posted an update 1 day, 7 hours ago
Bi-directional brain-computer interfaces (BD-BCI) to restore movement and sensation must achieve concurrent operation of recording and decoding of motor commands from the brain and stimulating the brain with somatosensory feedback. Previously we developed and validated a benchtop prototype of a fully implantable BCI system for motor decoding. Here, a prototype artificial sensory stimulator was integrated into the benchtop system to develop a prototype of a fully-implantable BD-BCI. The artificial sensory stimulator incorporates an active charge balancing mechanism based on pulse-width modulation to ensure safe stimulation for chronically interfaced electrodes to prevent damage to brain tissue and electrodes. The feasibility of the BD-BCI system’s active charge balancing was tested in phantom brain tissue. With the charge-balancing, the removal of the residual charges on an electrode was evident. This is a critical milestone toward fully-implantable BD-BCI systems.Brain-machine interfaces (BMIs) translate neural signals into digital commands to control external devices. During the use of BMI, neurons may change their activity corresponding to the same stimuli or movement. The changes are represented by the neural tuning parameters which may change gradually and abruptly. Adaptive algorithms were proposed to estimate the time-varying parameters in order to keep decoding performance stable. The existing methods only searched new parameters locally which failed to detect the abrupt changes. Global search helps but requires the known boundary of estimated parameter which is hard to be defined in many cases. We propose to estimate the neural modulation parameter by the global search using adaptive point process estimation. This neural modulation parameter represents the similarity between the kinematics and the neural preferred hyper tuning direction with finite range [0,1]. this website The preferred hyper tuning direction is then decoupled from the neural modulation parameter by gradient descent method. We apply the proposed method on real data to detect the abrupt change of the neural tuning parameter when the subject switched from manual control to brain control mode. The proposed method demonstrates better tracking on the neural hyper tuning parameters than local searching method and validated by KS statistical test.Passive brain-computer interfaces (BCIs) covertly decode the cognitive and emotional states of users by using neurophysiological signals. An important issue for passive BCIs is to monitor the attentional state of the brain. Previous studies mainly focus on the classification of attention levels, i.e. high vs. low levels, but few has investigated the classification of attention focuses during speech perception. In this paper, we tried to use electroencephalography (EEG) to recognize the subject’s attention focuses on either call sign or number when listening to a short sentence. Fifteen subjects participated in this study, and they were required to focus on either call sign or number for each listening task. A new algorithm was proposed to classify the EEG patterns of different attention focuses, which combined common spatial pattern (CSP), short-time Fourier transformation (STFT) and discriminative canonical pattern matching (DCPM). As a result, the accuracy reached an average of 78.38% with a peak of 93.93% for single trial classification. The results of this study demonstrate the proposed algorithm is effective to classify the auditory attention focuses during speech perception.Task-related component analysis (TRCA) has been the most effective spatial filtering method in implementing high-speed brain-computer interfaces (BCIs) based on steady-state visual evoked potentials (SSVEPs). TRCA is a data-driven method, in which spatial filters are optimized to maximize inter-trial covariance of time-locked electroencephalographic (EEG) data, formulated as a generalized eigenvalue problem. Although multiple eigenvectors can be obtained by TRCA, the traditional TRCA-based SSVEP detection considered only one that corresponds to the largest eigenvalue to reduce its computational cost. This study proposes using multiple eigen-vectors to classify SSVEPs. Specifically, this study integrates a task consistency test, which statistically identifies whether the component reconstructed by each eigenvector is task-related or not, with the TRCA-based SSVEP detection method. The proposed method was evaluated by using a 12-class SSVEP dataset recorded from 10 subjects. The study results indicated that the task consistency test usually identified and suggested more than one eigenvectors (i.e., spatial filters). Further, the use of additional spatial filters significantly improved the classification accuracy of the TRCA-based SSVEP detection.The goal of this study is to estimate the thermal impact of a titanium skull unit (SU) implanted on the exterior aspect of the human skull. We envision this unit to house the front-end of a fully implantable electrocorticogram (ECoG)-based bi-directional (BD) brain-computer interface (BCI). Starting from the bio-heat transfer equation with physiologically and anatomically constrained tissue parameters, we used the finite element method (FEM) implemented in COMSOL to build a computational model of the SU’s thermal impact. Based on our simulations, we predicted that the SU could consume up to 75 mW of power without raising the temperature of surrounding tissues above the safe limits (increase in temperature of 1°C). This power budget by far exceeds the power consumption of our front-end prototypes, suggesting that this design can sustain the SU’s ability to record ECoG signals and deliver cortical stimulation. These predictions will be used to further refine the existing SU design and inform the design of future SU prototypes.Electroencephalogram (EEG) based brain-computer interfaces (BCIs) enable communication by interpreting the user intent based on measured brain electrical activity. Such interpretation is usually performed by supervised classifiers constructed in training sessions. However, changes in cognitive states of the user, such as alertness and vigilance, during test sessions lead to variations in EEG patterns, causing classification performance decline in BCI systems. This research focuses on effects of alertness on the performance of motor imagery (MI) BCI as a common mental control paradigm. It proposes a new protocol to predict MI performance decline by alertness-related pre-trial spatio-spectral EEG features. The proposed protocol can be used for adapting the classifier or restoring alertness based on the cognitive state of the user during BCI applications.