Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Helbo Lin posted an update 2 days, 8 hours ago

    InP nanocrystals exhibit a low photoluminescence quantum yield. As in the case of CdS, this is commonly attributed to their poor surface quality and difficult passivation, which give rise to trap states and negatively affect emission. AM580 in vivo Hence, the strategies adopted to improve their quantum yield have focused on the growth of shells, to improve passivation and get rid of the surface states. Here, we employ state-of-the-art atomistic semiempirical pseudopotential modeling to isolate the effect of surface stoichiometry from features due to the presence of surface trap states and show that, even with an atomistically perfect surface and an ideal passivation, InP nanostructures may still exhibit very long radiative lifetimes (on the order of tens of microseconds), broad and weak emission, and large Stokes’ shifts. Furthermore, we find that all these quantities can be varied by orders of magnitude, by simply manipulating the surface composition, and, in particular, the number of surface P atoms. As a consequence it should be possible to substantially increase the quantum yield in these nanostructures by controlling their surface stoichiometry.In further advancing display technologies, especially for improved blue emitters, to engineer the bandgap of promising semiconductors such as hybrid perovskites is important. Present-day methods for tuning the bandgaps of perovskites, such as the incorporation of mixed halide anions, suffer drawbacks such as phase separation and difficulty in synthesis. Here we report a new 2D lead iodide perovskite that emits in the blue spectral region. We exploit an increased angular distortion of PbI42- octahedra to widen the bandgap of 2D metal halide perovskites. We synthesized 2D lead iodide perovskites based on (4-Y-C6H4CH2NH3)2PbI4 (Y = H, F, Cl, Br, I) and substituted the halogen atoms with a -CF3 group to create (4-CF3-C6H4CH2NH3)2PbI4 compounds. We observed that the CF3-substituted material exhibited a ∼0.16 eV larger bandgap than did the halogen-substituted materials. We used X-ray diffraction and density functional theory simulations and found that the blue shift can be assigned to the angular distortion of the PbI42- lattice, a distortion traceable to repulsive intermolecular interactions between the trifluoromethyl groups on oppositely-arranged spacers. These results add a degree of freedom in tuning 2D perovskites to selected bandgaps for optoelectronic applications.Intrinsically disordered protein-regions (IDRs) make up roughly 30% of the human proteome and are central to a wide range of biological processes. Given a lack of persistent tertiary structure, all residues in IDRs are, to some extent, solvent exposed. This extensive surface area, coupled with the absence of strong intramolecular contacts, makes IDRs inherently sensitive to their chemical environment. We report a combined experimental, computational, and analytical framework for high-throughput characterization of IDR sensitivity. Our framework reveals that IDRs can expand or compact in response to changes in their solution environment. Importantly, the direction and magnitude of conformational change depend on both protein sequence and cosolute identity. For example, some solutes such as short polyethylene glycol chains exert an expanding effect on some IDRs and a compacting effect on others. Despite this complex behavior, we can rationally interpret IDR responsiveness to solution composition changes using relatively simple polymer models. Our results imply that solution-responsive IDRs are ubiquitous and can provide an additional layer of regulation to biological systems.Wastewater is a common pathway for the spread of antibiotic resistance (AR) genes and bacteria into the environment. Biological treatment can mitigate this path, but horizontal gene transfer (HGT) between bacteria also occurs in such processes, although the influence of bioreactor habitat and ecology on HGT frequency is not well understood. Here, we quantified how oxidation-reduction (redox) conditions impact the fate of a Green fluorescent protein (Gfp)-tagged AR plasmid (pRP4-gfp) within an E. coli host (EcoFJ1) in the liquid phase and biofilms in bioreactors. Replicate reactors treating domestic wastewater were operated under stable aerobic (+195 ± 25 mV), anoxic (-15 ± 50 mV), and anaerobic (-195 ± 15 mV) conditions, and flow cytometry and selective plating were used to quantify donor strain, EcoFJ1(pRP4-gfp), and putative transconjugants over time. Plasmid pRP4-gfp-bearing cells disappeared rapidly in aerobic ecosystems (∼2.0 log reduction after 72 h), especially in the liquid phase. In contrast, EcoFJ1(pRP4-gfp) and putative transconjugants persisted much longer in anaerobic biofilms (∼1.0 log reduction, after 72 h). Plasmid transfer frequencies were also higher under anaerobic conditions. In parallel, protozoan abundances were over 20 times higher in aerobic reactors relative to anaerobic reactors, and protozoa numbers significantly inversely correlated with pRP4-gfp signals across all reactors (p less then 0.05). Taken together, observed HGT frequency and plasmid retention are impacted by habitat conditions and trophic effects, especially oxygen conditions and apparent predation. New aerobic bioreactor designs are needed, ideally employing passive aeration to save energy, to minimize resistance HGT in biological wastewater treatment processes.Thermoacoustic (TA) loudspeakers have garnered significant attention in recent times as a novel film speaker that utilizes temperature oscillation to vibrate the surrounding air. Conventional film-type TA loudspeakers are known to experience problems when external environments damage their conductive networks, causing them to malfunction. Therefore, introducing self-healing polymers in TA loudspeakers could be an effective way to restore the surface damage of conductive networks. In this study, we present transparent, flexible, and self-healable TA loudspeakers based on silver nanowire (AgNW)-poly(urethane-hindered urea) (PUHU) conductive electrodes. Our self-healable AgNW/PUHU electrodes exhibit significant self-healing for repairing the surface damages that are caused due to the dynamic reconstruction of reversible bulky urea bonds in PUHU. The fabricated self-healable TA loudspeakers generate a sound pressure level of 61 dB at 10 kHz frequency (alternating current (AC) 7 V/direct current (DC) 1 V). In particular, the TA speakers are able to recover the original sound after healing the surface damages of electrodes at 95 °C and 80% relative humidity within 5 min.

Facebook Pagelike Widget

Who’s Online

Profile picture of Hutchinson Porterfield
Profile picture of palermo2
Profile picture of Preston Day
Profile picture of MacDonald Anker