Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Buus Kaufman posted an update 8 hours, 26 minutes ago

    This attempt provided theoretical support for regulating Pickering emulsion properties by polysaccharides addition, and established Pickering emulsions with various demands.Ice recrystallization inhibitors have emerged as novel cryoprotectants to improve cell viability for cryopreservation. Nanocelluloses were identified as new materials for ice recrystallization inhibition (IRI); however, conventional nanocelluloses aggregate and lose IRI activity at high ionic strengths, which limit their application as cryoprotectants. In this study, we synthesized a novel group of nanocelluloses – electrosterically stabilized cellulose nanocrystals (ECNCs), which remained dispersed and IRI-active at high ionic strengths. ECNCs improved the post-thaw viability of HCT-116 colorectal cancer cells in slow/fast freezing-slow thawing protocols in the presence of 1-20% v/v dimethyl sulfoxide (DMSO), as well as in slow/fast freezing-fast thawing protocols at reduced DMSO concentrations. The effectiveness in cryoprotection did not match the IRI activity in ECNCs, polyethylene glycol (PEG), and polyvinyl alcohol (PVA); and in ECNCs with different surface charge densities. Overall, ECNCs demonstrated IRI and cryoprotection activities, but the mechanism of cryoprotection remains unknown.This work evaluates different dendrimer-silica supports for the immobilization of enzymes by multipoint covalent binding. Thermolysin was immobilized on two dendrimers (PAMAM and carbosilane) with two different generations (zero (G0) and first (G1)). Results were compared with a control, a silica support functionalized with a monofunctional molecule. Dendrimers increased the number of available sites to bind the enzyme. Despite the enzyme was immobilized on all supports, G0 dendrimers immobilized a 30% more enzyme than G1. Thermolysin immobilized on G0 dendrimer supports showed the highest activity and could be employed in three consecutive hydrolysis cycles. Optimal immobilization time was 1 h while optimal protein loading was 25 mg enzyme/100 mg support. Enzyme activity was promoted when using 5 mg of immobilized enzyme at 750 rpm, 60 °C, and 2 h of hydrolysis. Under these conditions, the activity of thermolysin increased up to the 78% of the free enzyme activity. Kinetics of the hydrolysis reaction using the immobilized thermolysin was also studied and compared with the obtained using the free thermolysin. The addition of ZnCl2 and NaCl during the immobilization procedure increased thermolysin activity in the second (22% more) and in the third (14% more) hydrolysis clycles.Herbal bioactive compounds have captured pronounced attention considering their health-promoting effects as well as their functional properties. In this study, the binding mechanism between milk protein bovine β-lactoglobulin (β-LG), oleuropein (OLE) and safranal (SAF) found in olive leaf extract and saffron, respectively via spectroscopic and in silico studies. Fluorescence quenching information exhibited that interactions with both ligands were spontaneous and hydrophobic interactions were dominant. Also, the CD spectroscopy results demonstrated the increase in β-sheet structure and decrease in the α-helix content for both ligands. Size of β-LG-OLE complex was higher than β-LG-SAF due to the conformation and larger molecular size. Molecular docking and simulation studies revealed that SAF and OLE bind in the central calyx of β-LG and the surface of β-LG next to hydrophobic residues. Lastly, OLE formed a more stabilized complex compared to SAF based on the molecular dynamic simulation results.Chondroitin sulfate (CS)/dermatan sulfate (DS) lyases play important roles in structural and functional studies of CS/DS. In this study, a novel CS/DS lyase (enCSase) was identified from the genome of the marine bacterium Photobacterium sp. QA16. This enzyme is easily heterologously expressed and purified as highly active form against various CS, DS and hyaluronic acid (HA). Under the optimal conditions, the specific activities of this enzyme towards CSA, CSC, CSD, CSE, DS and HA were 373, 474, 171, 172, 141 and 97 U/mg of proteins, respectively. As an endolytic enzyme, enCSase degrades HA to unsaturated hexa- and tetrasaccharides but CS/DS to unsaturated tetra- and disaccharides as the final products. Sequencing analysis showed that the structures of tetrasaccharides in the final products of CS variants were not unique but were highly variable, indicating the randomness of substrate degradation by this enzyme. Further studies showed that the smallest substrate of enCSase was octasaccharide for HA but hexasaccharide for CS/DS, which could explain why this enzyme cannot degrade HA hexa- and tetrasaccharides and CS/DS tetrasaccharides further. It is believed that enCSase may be a very useful tool for structural and functional studies and related applications of CS/DS and HA.Spectroscopic analysis of HPLC-purified 7.3-kD Acorus tatarinowii Schott root polysaccharide ASP2-1 (FT-IR, NMR) revealed respective monosaccharide proportions of glucose galactose arabinose xylose galacturonic acid mannose rhamnose glucuronic acidfucose of 49.116.011.610.25.32.92.21.70.8. UNC0642 order In vitro, ASP2-1 inhibited osteoclastogenesis-associated bone resorption, RANKL-induced osteoclastogenesis and F-actin ring formation and suppressed osteoclastogenesis-associated gene expression (e.g., TRAP, OSCAR, Atp6v0d2, αV, β3, MMP9 and CtsK) as shown via RT-PCR. ASP2-1-treated RANKL-stimulated bone marrow-derived macrophages exhibited decreased levels of NFATc1 and c-Fos mRNAs and corresponding transcription factor proteins, elevated expression of negative NFATc1 regulators (Mafb, IRF8, Bcl6) and reduced their upstream negative regulator (Blimp1) expression. ASP2-1 inhibition of NFATc1 expression involved PLCγ2-Ca2+ oscillation-calcineurin axis suppression, reflecting suppression of RANKL-induced PLCγ2 activation (and associated Ca2+ oscillation) and calcineurin catalytic subunit PP2BAα expression without inhibiting NF-κB and MAPKs activation or phosphorylation. Staining (H&E, TRAP) and micro-CT assays revealed ASP2-1 attenuated bone destruction and osteoclast over-activation and improved tibia micro-architecture in a murine LPS-induced bone loss model. Thus, ASP2-1 may alleviate inflammatory bone loss-associated diseases.

Facebook Pagelike Widget

Who’s Online

Profile picture of Bryant Mollerup
Profile picture of Smart Rye
Profile picture of Herskind Begum
Profile picture of Hamann Sommer
Profile picture of Groth Schwartz
Profile picture of Mohr Leslie
Profile picture of Bank Creech
Profile picture of Guthrie Jacobson