-
Malloy Falk posted an update 4 days, 8 hours ago
or siκB-Ras2 into TAMs inhibited miR-99b antagomir-triggered tumor growth. Finally, miR-99b expression was lower in TAMs of patients with liver cancer than that in adjacent tissues, while the expression of κB-Ras2 and mTOR was reversed.
Our results reveal the mechanism of miR-99b-mediated TAM phenotype, indicating that TAM-targeted delivery of miR-99b is a potential strategy for cancer immunotherapy.
Our results reveal the mechanism of miR-99b-mediated TAM phenotype, indicating that TAM-targeted delivery of miR-99b is a potential strategy for cancer immunotherapy.Some fishes rely on large regions of the dorsal (epaxial) and ventral (hypaxial) body muscles to power suction feeding. Epaxial and hypaxial muscles are known to act as motors, powering rapid mouth expansion by shortening to elevate the neurocranium and retract the pectoral girdle, respectively. However, some species, like catfishes, use little cranial elevation. Are these fishes instead using the epaxial muscles to forcefully anchor the head, and if so, are they limited to lower-power strikes? We used X-ray imaging to measure epaxial and hypaxial length dynamics (fluoromicrometry) and associated skeletal motions (XROMM) during 24 suction feeding strikes from three channel catfish (Ictalurus punctatus). We also estimated the power required for suction feeding from oral pressure and dynamic endocast volume measurements. Cranial elevation relative to the body was small ( less then 5 deg) and the epaxial muscles did not shorten during peak expansion power. In contrast, the hypaxial muscles consistently shortened by 4-8% to rotate the pectoral girdle 6-11 deg relative to the body. Despite only the hypaxial muscles generating power, catfish strikes were similar in power to those of other species, such as largemouth bass (Micropterus salmoides), that use epaxial and hypaxial muscles to power mouth expansion. These results show that the epaxial muscles are not used as motors in catfish, but suggest they position and stabilize the cranium while the hypaxial muscles power mouth expansion ventrally. Thus, axial muscles can serve fundamentally different mechanical roles in generating and controlling cranial motion during suction feeding in fishes.
To test the hypothesis that the intrathecal synthesis of free light chain kappa (FLC-k) can be used as a CSF biomarker to differentiate patients with myelitis due to multiple sclerosis (MS), myelitis due to neuromyelitis optica spectrum disease (NMOSD), and noninflammatory myelopathy, we analyzed FLC-k in 26 patients with MS myelitis, 9 patients with NMOSD myelitis, and 14 patients with myelopathy.
This is a retrospective monocentric cohort study. FLC-k were analyzed using the nephelometric Siemens FLC-k kit in paired samples of CSF and sera. Intrathecal fraction (IF) of FLC-k was plotted in a FLC-k quotient diagram.
Ninety-six percent of patients with MS myelitis had an intrathecal synthesis of FLC-k in comparison with 55.6% for NMOSD and 14.3% of patients with noninflammatory myelopathy. The locally synthesized absolute amount of FLC-k was significantly higher in patients with myelitis due to MS than in patients with NMOSD (
= 0.038) or noninflammatory myelopathy (
< 0.0001). The sensitivity of FLC-k synthesis to detect inflammation in patients with myelitis is 85.7%. Using a receiver operating characteristic analysis, FLC-k IF >78% can discriminate patients with myelitis due to MS and NMOSD with a sensitivity of 88.5% and a specificity of 88.9% CONCLUSIONS With the hyperbolic reference range in quotient diagrams for FLC-k, it is possible to distinguish inflammatory myelitis from noninflammatory myelopathies. An FLC-k IF >78% can be a hint to suspect myelitis due to MS rather than NMOSD.
78% can be a hint to suspect myelitis due to MS rather than NMOSD.Nerve growth factor (NGF) is the protein responsible for the development and maintenance of sensory skin innervation. Given the role of appropriate innervation in skin healing, NGF has been indicated as a possible prohealing treatment in pathologic conditions characterized by nerve-ending loss, such as chronic ulcers in diabetes; however, its use as a therapeutic agent is limited by its hyperalgesic effect. We tested the effect of topical application of the nonalgogenic NGF derivative hNGFP61S/R100E in two models of skin ulcer induced in dbdb diabetic mice, investigating healing time, skin histology, reinnervation, and angiogenesis using morphologic and molecular approaches. We showed that the topical administration of CHF6467, a recombinant human NGF in which an amino acid substitution (R100E) abolished the hyperalgesic effect usually associated with NGF, accelerated skin repair in experimental wounds (full-excision and pressure-ulcer) induced in diabetic mice (dbdb). CHF6467-induced acceleration of wound hese B/mammalian target of rapamycin pathway and does not induce hyperalgesia.Leishmania spp. infection is a global health problem affecting more than 2 million people every year with 300 million at risk worldwide. It is well established that a dominant Th1 response (IFN-γ, a hallmark Th1 cytokine) provides resistance, whereas a dominant Th2 response (IL-4, a hallmark Th2 cytokine) confers susceptibility during infection. Given the important role of IL-4 during L. major infection, we used IL-4-neutralizing Abs to investigate the cellular and molecular events regulated by IL-4 signaling. As previously published, neutralization of IL-4 in L. major-infected BALB/c mice (a Leishmania susceptible strain) provided protection when compared with control L. major-infected BALB/c mice. Despite this protection, IFN-γ production by T cells was dramatically reduced. Temporal neutralization of IL-4 revealed that acute IL-4 produced within the first days of infection is critical for not only programming IL-4-producing Th2 CD4+ T cells, but for promoting IFN-γ produced by CD8+ T cells. Mechanistically, IL-4 signaling enhances anti-CD3-induced Tbet and IFN-γ expression in both CD4+ and CD8+ T cells. selleck products Given the pathogenic role of IFN-γ-producing CD8+ T cells, our data suggest that IL-4 promotes cutaneous leishmaniasis pathology by not only promoting Th2 immune responses but also pathogenic CD8+ T cell responses. Our studies open new research grounds to investigate the unsuspected role of IL-4 in regulating both Th1 and Th2 responses.