Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Franklin Frandsen posted an update 4 days, 8 hours ago

    9994), respectively, and detection limits of 3.10 and 9.48 μM, respectively), good recoveries in the ranges of 85.89-112.66% and 84.88-113.92% for CN- and [Fe(CN)6]3-, respectively, were recorded. The developed methods were successfully used for the simultaneous and selective detection of CN- and [Fe(CN)6]3- in wastewater samples obtained from local municipal water reservoirs.The understanding of the structural change of DNA induced by fungicides is essential as the non-targeted action of fungicides causes genotoxicity, leading to several serious diseases such as cancer, behavioral change, and nausea. In this study, the binding of an important fungicide, namely, n-dodecylguanidine acetate (dodine), with B-DNA having different sequences of nucleobases and its effect on the structure of B-DNA has been investigated using spectroscopic and simulation methods. In general, the addition of dodine destabilizes DNA; however, the binding of dodine causing the destabilization of DNA is highly sequence dependent. In the case of adenine(A)-thymine(T)-based DNA, dodine intrudes into the minor groove of DNA and interacts with the A-T bases mainly through its hydrocarbon tail, which destabilizes the stacking interaction of the flanking bases. In contrast, the polar group of dodine interacts with guanine(G)-cytosine(C)-rich DNA, and the interaction is dynamic as it shuttles between the minor groove and terminal regions. The binding of dodine with G-C-rich DNA affects the stacking interaction of the terminal base regions specifically. This study reveals the base-specific binding mode of dodine, which causes destabilization of the duplex DNA.The cause of nonbacterial chronic prostatitis is unknown, yet its prevalence accounts for more than 90% of all prostatitis cases. Whole blood, plasma, and serum have been used to identify prostate cancer biomarkers; however, few studies have performed protein profiling to identify prostatitis biomarkers. The purpose of this study was to identify protein biomarkers altered by chronic prostatitis. To perform the study, we chemically induced chronic prostate inflammation in Sprague Dawley rats using estradiol benzoate (EB), testosterone (T), and estradiol (E) and then examined protein levels in their plasma. Plasma was collected on postnatal days (PNDs) 90, 100, 145, and 200; plasma proteins were profiled using liquid chromatography-tandem mass spectrometry. Chronic inflammation was observed in the rat prostate induced with EB on PNDs 1, 3, and 5. Rats then were dosed with T+E during PNDs 90-200 via subcutaneous implants. We identified time-specific expression for several proteins (i.e., CFB, MYH9, AZGP1). Some altered proteins that were expressed in the prostate (i.e., SERPINF1, CTR9) also were identified in the rat plasma in the EB+T+E group on PNDs 145 and 200. These findings suggest that the identified proteins could be used as biomarkers of chronic prostatitis. Further studies are needed to verify the results in human samples.Traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. Qizhen decoction (QZD), a potential compound prescription of TCM, possesses multiple biological activities. It has been proven clinically effective in the treatment of colon cancer. However, the molecular mechanism of anticolon cancer activity is still not clear. This study aimed to identify the chemical composition of QZD. Furthermore, a collaborative analysis strategy of network pharmacology and cell biology was used to further explore the critical signaling pathway of QZD anticancer activity. First, ultraperformance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the chemical composition of QZD. Then, the chemical composition database of QZD was constructed based on a systematic literature search and review of chemical constituents. Moreover, the common and indirect targets of chemical components of QZD and colon cancer were searched by multiple databases. A prnding, regulation of signal receptors or enzyme binding, and affect cytoplasm and membrane-bound organelles. The main antitumor core pathways were the apoptosis metabolic pathway, the PI3K-Akt signal pathway, and so on. Expression of the PI3K-Akt signal pathway was significantly downregulated after the intervention of QZD, which was closely related to the inhibition of proliferation and migration of colon cancer cells by cell biology methods. The present work may facilitate a better understanding of the effective components, therapeutic targets, biological processes, and signaling pathways of QZD in the treatment of colon cancer and provide useful information about the utilization of QZD.In this paper, an efficient approach to extract total flavonoids (TFs) from Selaginella involvens (Sw.) Spring using homogenate-ultrasound-assisted ionic liquid (IL) extraction (HUA-ILE) was first developed. The results indicated that EPyBF4 was selected as the suitable extractant. According to the single factor experiment and response surface methodology, the IL concentration of 0.10 mol/L, the extraction time of 160 s, the liquid/solid ratio of 131 mL/g, and the extraction power of 300 W were concluded as the best conditions. A yield of 8.48 ± 0.27 mg/g TF content was obtained. Compared with HUA ethanol extraction, ultrasound-assisted IL extraction, and percolation extraction, the TF content obtained by the HUA-ILE method could be increased by 2 to 4 times, and the extraction time could be reduced by 100 times. Furthermore, 16 compounds of the TF extract were finally identified through ultra-performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry, among which 11 compounds were first discovered in S. involven. The contents of six biflavonoids in S. involven were determined simultaneously adopting high-performance liquid chromatography, including amentoflavone, hinokiflavone, bilobetin, ginkgetin, isoginkgetin, and heveaflavone. The TF extract in S. involven was proved to have potent antioxidant activity through the four antioxidant experiments. In conclusion, HUA-ILE was applied for the first time to exploit a green, efficient, and novel approach to extract TFs, and the research also provided promising prospects for applications of S. Selleck Oseltamivir involven.

Facebook Pagelike Widget

Who’s Online

Profile picture of Fraser Poulsen
Profile picture of Rowland Voigt
Profile picture of Aagesen McCulloch
Profile picture of bimiv50163
Profile picture of Holst Bentzen
Profile picture of Combs Estes
Profile picture of Frantzen Lindholm
Profile picture of Markussen Kang
Profile picture of Proctor Krogsgaard
Profile picture of Lodberg Glud
Profile picture of Otte Bentley
Profile picture of Salas Petersson
Profile picture of Costello Kincaid
Profile picture of Buckner McKinley