-
Ahmad Torp posted an update 4 days, 8 hours ago
We have measured the electrophoretic mobility and diffusion coefficient of carboxylate-modified and sulfate-modified polystyrene latex particles in poly(ethylene oxide) aqueous solutions. KPT-185 mouse Carboxylate-modified polystyrene particles have shown a bound polymeric layer as the surface net charge vanishes even at very low poly(ethylene oxide) concentration. The polymeric layer causes a lower electrophoretic mobility and slower Brownian diffusion than that corresponding to the bare particles. We show that the diffusion is the result of a significantly increased effective particle size 2rheff = 30 nm. This bound layer is not present in sulfate-modified polystyrene latex particles. The interaction between the carboxylate-modified particle surface and the macromolecules has been confirmed by means of atomistic computer simulations. The grafted acrylate copolymers, which come from the preparation procedure of the latex particles, confer more hydrophobic surface ready to interact with the polymer. The simulations suggest that the interaction is modulated not only by the nature of the acrylic acid monomer but also by the length of the grafted copolymer. Our results have important implications for particle selection in microrheology experiments.The design of molecular architectures exhibiting functional motions is a promising area for disruptive technological development. Toward this goal, rotaxanes and catenanes, which undergo relative motions of their subunits in response to external stimuli, are prime candidates. Here, we report on the computational analysis of the contraction/extension of a bistable [c2]daisy chain rotaxane. Using free-energy calculations and transition path optimizations, we explore the free-energy landscape governing the functional motions of a prototypical molecular machine with atomic resolution. The calculations reveal a sequential mechanism in which the asynchronous gliding of each ring is preferred over the concerted movement. Analysis of the underlying free-energy surface indicates that the formation of partially rearranged intermediates entails crossing of much smaller barriers. Our findings illustrate an important design principle for molecular machines, namely that efficient exploitation of thermal fluctuations may be realized by breaking down the large-scale functional motions into smaller steps.Batteries have the potential to significantly reduce greenhouse gas emissions from on-road transportation. However, environmental and social impacts of producing lithium-ion batteries, particularly cathode materials, and concerns over material criticality are frequently highlighted as barriers to widespread electric vehicle adoption. Circular economy strategies, like reuse and recycling, can reduce impacts and secure regional supplies. To understand the potential for circularity, we undertake a dynamic global material flow analysis of pack-level materials that includes scenario analysis for changing battery cathode chemistries and electric vehicle demand. Results are produced regionwise and through the year 2040 to estimate the potential global and regional circularity of lithium, cobalt, nickel, manganese, iron, aluminum, copper, and graphite, although the analysis is focused on the cathode materials. Under idealized conditions, retired batteries could supply 60% of cobalt, 53% of lithium, 57% of manganese, and 53% of nickel globally in 2040. If the current mix of cathode chemistries evolves to a market dominated by NMC 811, a low cobalt chemistry, there is potential for 85% global circularity of cobalt in 2040. If the market steers away from cathodes containing cobalt, to an LFP-dominated market, cobalt, manganese, and nickel become less relevant and reach circularity before 2040. For each market to benefit from the recovery of secondary materials, recycling and manufacturing infrastructure must be developed in each region.Immunotherapy has provided a promising strategy for the treatment of cancers. However, even in tumors with high antigen burdens, the systemic inhibition of the antigen presentation still greatly restricts the application of immunotherapy. Here, we construct a tumor protein-engineering system based on the functional tripeptide, Asp-Phe-Tyr (DFY), which can automatically collect and deliver immunogenetic tumor proteins from targeted cells to immune cells. Through a tyrosinase-catalyzed polymerization, the DFY tripeptide selectively accumulates in tyrosinase high-expressed melanoma cells. Then quinone-rich intermediates are covalently linked with tumor-specific proteins by Michael addition and form tumor protein-carried microfibers that could be engulfed by antigen-presenting cells and exhibited tumor antigenic properties for boosting immune effect. In melanoma cells with deficient antigen presentation, this system can successfully enrich and transport tumor antigen-containing proteins to immune cells. Furthermore, in the in vivo study on murine melanoma, the transdermal delivery of the DFY tripeptide suppressed the tumor growth and the postsurgery recurrence. Our findings provide an avenue for the regulation of the immune system on an organism by taking advantage of certain polymerization reactions by virtue of chemical biology.High-throughput computational studies of lanthanide and actinide chemistry with density-functional theory are complicated by the need for Hubbard U corrections, which ensure localization of the f-electrons, but can lead to metastable states. This work presents a systematic investigation of the effects of both Hubbard U value and metastable states on the predicted structural and thermodynamic properties of four uranium compounds central to the field of nuclear fuels UC, UN, UO2, and UCl3. We also assess the impact of the exchange-hole dipole moment (XDM) dispersion correction on the computed properties. Overall, the choice of Hubbard U value and inclusion of a dispersion correction cause larger variations in the computed geometric properties than result from metastable states. The weak dependence of structure optimization on metastable states should simplify future high-throughput calculations on actinides. Conversely, addition of the dispersion correction is found to offset the repulsion introduced by the Hubbard U term and provides greatly improved agreement with experiment for both cell volumes and heats of formation.