Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Castillo Desai posted an update 7 hours, 16 minutes ago

    In patients with HF with reduced ejection fraction, mental stress can provoke acute worsening of LV diastolic pressure, and recent anger is associated with worse resting LV diastolic pressure. In patients vulnerable to these effects, repeated stress exposures or experiences of anger may have implications for long-term outcomes.

    In patients with HF with reduced ejection fraction, mental stress can provoke acute worsening of LV diastolic pressure, and recent anger is associated with worse resting LV diastolic pressure. In patients vulnerable to these effects, repeated stress exposures or experiences of anger may have implications for long-term outcomes.The present study aims to extract and characterize the microcrystalline cellulose (MCC) present in different agro-industrial wastes such as walnut shells, corncob, and sugarcane bagasse. Moreover, it is also the aim of this study to convert MCCs to nanocrystalline cellulose fiber (NCCF), to demonstrate the difference in morphological, structural, thermal, and chemical natures. Corncob cellulose was observed to possess a loosely bounded linear bundle structure. Nanocrystalline cellulose fiber yield from walnut shell and sugarcane bagasse cellulose were higher than corncob cellulose. The thermal stability of cellulose was noted to be high for walnut shell NCCF. Nanocrystalline cellulose fiber of corncob and sugarcane bagasse was estimated to have a low thermal degradation temperature. All the MCCs and NCCFs produced from investigated cellulose sources were found to have type I cellulose. Functional group compositions of cellulose were observed to be intact for converted agro-based NCCF’s.The misfolding of soluble protein to amyloid fibers or oligomers leads to cell membrane rupture, cell death, and a variety of amyloid-related diseases. Hence, inhibition of protein fibrillation is an important and promising method to prevent and treat these diseases. In this study, we have investigated the inhibitory effect of entacapone (Ent) on human lysozyme (HL) amyloid fibrillation using a combination of biophysical techniques; Rayleigh scattering (RLS) data indicated that Ent can reduce the aggregation of HL amyloid fibrillation with the inhibition constant (Λ) of (3.0 ± 0.5) × 103 M-1. This finding was further confirmed by thioflavin-T (ThT), 8-Anilino-1-naphthalenesulfonic acid (ANS) fluorescence assays and congo red (CR) binding absorption assays with an IC50 value of 125.89 ± 1.25 μM. Meanwhile, dynamic light scattering (DLS) showed that the size of HL amyloids decreases sharply after Ent treatment. This effect was positively correlated with Ent concentration. Atomic force microscopy (AFM) techniques confirmed that the formation of the fibril decreased significantly when HL was co-incubated with Ent. In addition, steady-state fluorescence spectra and synchronous fluorescence analysis suggested that the formation of stable complexes between Ent and HL contributes to maintain the alpha-helical structure of HL. The molecular docking study revealed that the Ent binds at the active pocket of HL with Glu35, Asp53, Gln58, Trp 64, Ala108 and Trp109 residues via hydrogen bonds, van-der-Waals forces and hydrophobic interactions. The epitope mapping of HL for its interaction with Ent was further elucidated using two-dimensional solution-state nuclear magnetic resonance (NMR) experiments. NMR results showed that the Trp64 and Trp109 of HL plays an important role for binding to Ent, correlating well with our docking result. Thus our study showed the potential of Ent to serve as an effective therapeutic agent for the therapy of amyloid-related diseases.The current investigation reports a novel and facile method for modification of low molecular weight chitosan (Cs) with guanidine moieties, aimed at enhancing its cellular interaction and thus augmenting its cellular internalization. Guadinylated chitosan-copper (Cs-Gn-Cu) chelates, based on copper-nitrogen co-ordination, were established. Characterization of chelates was conducted using 1H NMR, 13C NMR, XPS, XRD, TGA-DTA, and GPC techniques. Anticancer activity of formed chelates was confirmed against A549 cells using MTT assay. Experimental outcomes, for the first time, have provided an empirical evidence for synergistic interaction between the chelated polymer (Cs-Gn-Cu) and the established anti-cancer agent, Doxorubicin (Dox), based on analysis by the Chou Talalay method and estimation of their combination indices. ROS induction was demonstrated as the mechanism of action of the chelated polymer, which supplemented rapid destruction of cancerous cells by Dox. These findings strongly advocate the need for harnessing unexplored potential of these innovative metal polymer chelates in cases of Dox resistant lung cancer, wherein the polymeric system itself would serve as an anti-cancer agent.Chitinase from the leaves of Simarouba glauca, a plant used in traditional anti-inflammatory therapy is purified and characterized. Peptide mass finger print analysis revealed the protein as an endo-chitinase which was further confirmed using chitin-agar assay. The enzyme exhibited significant anti-fungal efficacy against phyto-pathogens such as Macrophomina phaseolina, Fusarium oxysporum and Sclerotium rolfsii. Chitinolysis was also examined against insoluble chitin using SEM. Using X-ray diffraction data up to 1.66 Å, the structure was determined by Molecular Replacement using crystal structure of GH19 Chitinase-like protein from Hevea brasiliensis. PFI-3 in vivo During structure refinement, an extra domain could be traced and identified as hevein domain. To our knowledge, this is the first report of any chitinase with intact hevein domain. The GH19 chitinase and hevein domains though connected by a lengthy loop, are restricted to be close by disulfide bridges. These bridges connecting each domain with the loop may be important for proper chitin feeding into the active site. By considering reports on hevein and chitinase domains as well as the traditional use of the plant, this report of an intact hevein-chitinase protein and their relative orientation may add further insights for the usefulness of this protein.

Facebook Pagelike Widget

Who’s Online

Profile picture of tantra masaz
Profile picture of Appel Geertsen
Profile picture of jaylen
Profile picture of Ryan Gay
Profile picture of Silva Ritchie
Profile picture of Vendelbo Jacobsen
Profile picture of Eskesen Combs