Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Wentworth Temple posted an update 6 hours, 20 minutes ago

    Sugar will eventually be exported transporters (SWEETs), a novel family of sugar transporters found in both eukaryotes and prokaryotes, facilitate sugar flux across the cell membrane. Although these transporters were first discovered in plants, their homologs have been reported in different organisms. SWEETs have critical roles in various developmental processes, including phloem loading, nectar secretion, and pathogen nutrition. The structure of bacterial homologs, called SemiSWEETs, has been well studied thus far. Here, we provide an overview of SWEET protein structure and dynamic function by analyzing the solved crystal structures and predicted models that are available for a few SWEETs in a monocot plant (rice) and dicot plant (Arabidopsis thaliana). this website Despite the advancement in structure-related studies, the regulation of SWEETs remains unknown. In light of reported regulatory mechanisms of a few other sugar transporters, we propose the regulation of SWEETs at the post-translational level. We then enumerate the potential post-translational modification sites in SWEETs using computational tools. Overall, in this review, we critically analyze SWEET protein structure in plants to predict the post-translational regulation of SWEETs. Such findings have a direct bearing on plant nutrition and defense and targeting the regulation at these levels will be important in crop improvement.

    With a rapid increase in aging population and prevalence of chronic diseases worldwide, older adults are seen facing more physical and psychological burdens, affecting their quality of life (QoL). Tai Chi, a traditional Chinese mind-body physical activity, appeals to many older adults and has been extensively studied. However, the effectiveness of Tai Chi on QoL, depressive symptoms and physical function on community-dwelling older adults remains vague.

    To synthesise and evaluate effectiveness of Tai Chi on QoL, depressive symptoms and physical function among community-dwelling older adults with chronic disease.

    Searches were performed across seven databases systematically (PubMed, Embase, Cochrane, CINAHL, Scopus, ProQuest, CNKI). Only randomised controlled trials (RCTs), written in English or Chinese were included. All eligible studies were screened with risk of bias examined by two independent reviewers. Meta-analyses were conducted using RevMan 5.3 software while narrative syntheses were performed wh larger sample sizes.One of the factors hindering the development of enzymatic biosensors and biofuel cells in real-life applications is the time-dependant degradation of the biocatalysts on electrode surfaces. In this work, we present a new practical approach for extending the operation lifetimes of bioelectrocatalytic assemblies based on bilirubin oxidase (BOD). As evident by both spectroscopic and electrochemical measurements, an adsorption of carbon-coated magnetic nanoparticles (ccMNPs) onto a BOD/carbon nanotubes-deposited surface yields a stable bioelectrocathode system for mediatorless oxygen reduction. As compared to electrodes, which were stored without a preliminary interaction with the ccMNPs, an 80% increase in the active enzymatic content and the electrocatalytic performance was evident for the modified assemblies over a course of one month. As the full removal of the protective particles before the measurement requires only a single step applying an external magnetic force, the method is shown to be simple, reproducible, and easy to implement. Combined with the high efficiency in preserving the enzymatic stability and bioelectrocatalytic currents, the findings suggest a promising methodology for enhancing the lifetimes of bioelectronic applications.In this report, an electrochemical immunosensor for the selective and sensitive monitoring of Aβ1-42 fibrils is presented. The sensing platform was prepared by the formation of a 4,4′-thiobisbenzenethiol (TBBT) self-assembled monolayer on a clean gold surface followed by the covalent entrapment of gold nanoparticles (AuNPs). The half-antibody fragments of the Anti-Amyloid Fibrils antibody were immobilized on AuNPs via S-Au covalent bonds. Each step of immunosensor fabrication was characterized with cyclic voltammetry and electrochemical impedance spectroscopy. The biosensor was successfully used for the sensing of Aβ1-42 fibrils in both phosphate saline buffer (PBS) and artificial blood plasma (ABP). The immunosensor sensitivity estimated based on calibration slopes was better in the presence of APP in the comparison to PBS. The LOD values obtained for both measuring media were of 0.6 pM level. The moderate response towards Aβ1-42 oligomers demonstrated the immunosensor selectivity.Here, we examined the coral bleaching responses during the 2016 thermal stress event and post-bleaching changes in coral communities in the heavily disturbed reefs of the Bolinao-Anda Reef Complex (BARC), northwestern Philippines. Less than 25% of colonies bleached, with 77% attributed to five genera (Dipsastrea, Porites, Fungia, Seriatopora, and Montipora). Coral bleaching prevalence was associated with site location, coral composition, and coral abundance, suggesting that small-scale variation ( less then 20 km) in coral communities (taxa and density) influences spatial variation in coral bleaching prevalence. There was no noticeable change in coral composition and cover two years after the bleaching event as exposure to chronic disturbance likely selected for the dominance of stress tolerant coral taxa and communities. Results show that the 2016 thermal stress event caused coral bleaching but with low prevalence at the BARC, which suggests that disturbed reefs may provide spatial refuge to coral communities from thermal stress.Given a large quantity of epiphytes and other material attached on eelgrass leaf blades, we explored the relationship between eelgrass sheaths and different-aged leaf blades (1st, 2nd, 3rd, and 4th leaf blade) on nutrient content and their ratios (C, N, P, C/N, C/P, and N/P) to identify whether eelgrass sheaths could be used to instead of leaf blades in terms of nutrient content. In addition, we explored the relationship between eelgrass sheath length and shoot length. Results showed that there were significant relationships between the sheath and leaf blades in terms of N and P content and their ratios. For length analysis, there was a significant relationship between sheath length and shoot length, and shoot length was approximately four to five times (mean 4.4659) longer than sheath length, such that shoot length can be estimated by sheath length. These significant relationships suggest that eelgrass sheath could be used as a suitable predictor of leaf blade in length and nutrient stoichiometry, thus eelgrass sheath could be used as an indicator for further eelgrass nutrient monitoring and research.

Facebook Pagelike Widget

Who’s Online

Profile picture of Stuart Weinreich
Profile picture of Jensby Scarborough
Profile picture of Gonzales Friis
Profile picture of Andersson Taylor
Profile picture of Piper Ashworth
Profile picture of Herman Marks
Profile picture of Gross Bauer