-
Daugaard Warming posted an update 7 hours, 14 minutes ago
This method would provide great potential in applications which require high resolution volume imaging.A nanosecond-millisecond combined pulse laser (CPL) drilling method was proposed for drilling alumina ceramic. The total energy consumption of the CPL drilling was 1/7 of that of a conventional millisecond laser, and the drilling quality was better. The simulation results demonstrated that, due to the nonuniform reflection of the millisecond laser in the keyhole, the ellipse keyhole ablated by the off-axis incident nanosecond pulses had no effect on the circularity of the through hole. In addition, the multireflection of the laser in the keyhole enhanced the absorption, so the keyhole ablated by the nanosecond pulses could be used as a target for limiting the absorption of the subsequent millisecond pulses. In this context, the keyhole could be used to reduce the hole diameter if the subsequent millisecond laser had a bigger spot size, and this CPL drilling method could be used as an effective group hole drilling method.In this Letter, we investigate the tight focusing of a second-order cylindrical vector beam by a hyperbolic secant gradient index lens with a thickness of 10 µm, a radius of 9.43 µm, and a refractive index on the axis of 3.47 (silicon). It is shown that the lens forms the reverse energy flow near its shadow surface. Moreover, it was obtained that the spherical hole in the center of the shadow plane with a diameter of 0.3 µm allows us to localize the direct energy flow inside the lens material and with the reverse energy flow in an area of free space.Potassium terbium fluoride KTb3F10 (KTF) crystal is a promising magneto-active material for creating multi-kilowatt average-power Faraday isolators operating at the visible and near-infrared wavelengths. Nevertheless, the key material’s parameter needed for the design of any Faraday isolator-the Verdet constant, has not been comprehensively investigated yet. In this Letter, we report on measurement of the Verdet constant of the KTF crystal for wavelengths between 600 and 1500 nm and for temperatures ranging from 15 to 295 K. A suitable model for the Verdet constant as a function of wavelength and temperature has been developed and may be conveniently used for optimal design of KTF-based high-average-power Faraday isolators.We model the measured phase function and degree of linear polarization of a macroscopic agglomerate made of micrometer-scale silica spheres using the methodology of multiple scattering. In the laboratory work, the agglomerate is produced ballistically, characterized by scanning electron microscopy, and measured with the $ \textPROGRA^2 $PROGRA2 instrument to obtain the light scattering properties. The model phase function and degree of polarization are in satisfactory agreement with the experimental data. To our best knowledge, this is the first time the degree of linear polarization has been modeled well for a large, densely packed agglomerate composed of small particles with known sizes and shapes. The study emphasizes the relevance of the degree of linear polarization and gives insights into the effects of particle aggregation on the scattering characteristics.We describe an innovative optically computed optical coherence tomography (OC-OCT) technology. The OC-OCT system performs depth resolved imaging by computing the Fourier transform of the interferometric spectra optically. The OC-OCT system modulates the interferometric spectra with Fourier basis function projected to a spatial light modulator and detects the modulated signal without spectral discrimination. The novel, to the best of our knowledge, optical computation strategy enables volumetric OCT imaging without performing mechanical scanning and without the need for Fourier transform in a computer.We numerically investigate the dynamic control over the spontaneous emission rate of quantum emitters using tunable hyperbolic metamaterials (HMMs). The dispersion of a metal-dielectric thin-film stack at a given frequency can undergo a topological transition from an elliptical to a hyperbolic dispersion by incorporating a tunable metal or dielectric film in the HMM. This transition modifies the local density of optical states of the emitter and, hence, its emission rate. Dizocilpine mouse In the visible range, we use an HMM consisting of TiN and $\rm Sb_2\rm S_3$Sb2S3 and show considerable tunability in the Purcell enhancement and quantum efficiency as $\rm Sb_2\rm S_3$Sb2S3 phase changes from amorphous to crystalline. Similarly, we show tunable Purcell enhancement in the telecommunication wavelength range using a $\rm TiN/\rm VO_2$TiN/VO2- HMM. Finally, tunable spontaneous emission rate in the mid-IR range is obtained using a $\rm graphene/\rm MgF_2$graphene/MgF2 HMM by modifying the graphene conductivity through changing its chemical potential. We show that using a metal nitride (for the visible and NIR HMMs) and a fluoride (for the mid-IR HMM) is important to get an appreciable change in the effective permittivity of the thin-film multilayer stack.Catastrophic optical damage (COD) is one of the processes limiting the lifetime of high-power laser diodes. The understanding of this degradation phenomenon is critical to improve the laser power and lifetime for practical applications. In this Letter, we analyze the defect propagation inside the cavity of quantum well (QW) high-power laser diodes presenting COD. For this, we studied the effect of highly localized thermal gradients and degraded regions on the laser field distribution. Finite element method (FEM) simulations are compared to experimental cathodoluminescence (CL) measurements. The presence of micrometric hot spots inside the QW induces the thermal lensing of the laser field. The laser self-focusing inside the cavity eventually generates a new hot spot, and, in a repetitive way, a sequence of hot spots would be created. This would account for the propagation of the dark line defects (DLDs) that are characteristic of this degradation mode.In this Letter, we report a novel integrated additive and subtractive manufacturing (IASM) method to fabricate an information integrated glass module. After a certain number of glass layers are 3D printed and sintered by direct $\rm CO_2$CO2 laser irradiation, a microchannel will be fabricated on top of the printed glass by integrated picosecond laser, for intrinsic Fabry-Perot interferometer (IFPI) optical fiber sensor embedment. Then, the glass 3D printing process continues for the realization of bonding between optical fiber and printed glass. Temperature sensing up to 1000°C was demonstrated using the fabricated information integrated module. In addition, the long-term stability of the glass module at 1000°C was conducted. Enhanced sensor structure robustness and harsh temperature sensing capability make this glass module attractive for harsh environment structural health monitoring.