Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Barr Glud posted an update 3 weeks, 2 days ago

    Thus, we have proposed a novel concept that glial progenitor cells regulate the neuro-immune system in the central nervous system, in addition to their role as germinal cells, giving rise to mature glial cells. Neuroinflammation is associated with the onset and progression of depression, chronic fatigue syndrome, and neurodegenerative diseases, including Alzheimer’s disease. Anti-inflammatory effects of glial progenitor cells might bring about the possibility of these cells as the new therapeutic targets for such neurological disorders.Blood vessels including arteries, veins, and capillaries, are densely spread throughout the body. selleck One round of systemic blood circulation through these blood vessels occurs approximately every minute, and blood sent by the heart transports oxygen, nutrients, and fluid to cells throughout the body. This nourishes cells, tissues, and organs and maintains homeostasis. The relatively simple structure of blood vessels consists of endothelial cells surrounded by a basal lamina and pericytes covering the outer layer. However, blood vessels patterning markedly varies among tissues. The diversity and plasticity of vascular networks are considered vital for this system to facilitate distinct functions for each tissue. Recent studies revealed that blood vessels create a tissue-specific niche, thus attracting attention as biologically active sites for tissue development. This vascular niche establishes specialized microenvironments through both direct physical contact and secreted-soluble factors. Here, we review advances in our understanding of how the vascular niche is utilized by neural stem and progenitor cells during neocortical development, and describe future perspectives regarding new treatment strategies for neural diseases utilizing this vascular niche.Controlled drug release in response to light irradiation is an important technique for focusing drug elution to specific sites and reducing the side effects of drugs in normal tissue. In one example, we used double-stranded DNA to modify gold nanorods. When the gold nanorods were heated by irradiation with near-infrared light, single-stranded DNA was released. Thus, we successfully prepared a controlled release system that responds to near-infrared irradiation by combining heat-labile linkers such as double-stranded DNA. However, the drug-loading capacity on the surface of the nanoparticles was limited. To improve the loading efficiency, we encapsulated gold nanorods in poly(lactic-co-glycolic acid) (PLGA) nanoparticles, where PLGA acted as a drug payload. When the gold nanorod-containing PLGA nanoparticles were irradiated with a near-infrared laser, the PLGA nanoparticles were destroyed and significant drug release was observed. In another example, silver nanoplates were used as a near-infrared responsive photothermal nanodevice. Silver nanoparticles show antimicrobial activity that we expected could be controlled by light irradiation. First, we coated the silver nanoplates with gold atoms to mask the antimicrobial activity. When the gold-coated silver nanoplates were irradiated with a near-infrared pulsed laser, the shape of the silver nanoplates changed from plate-like to spherical, and silver ions were released. As a result, the antibacterial activity of the silver nanoplates was recovered. In this review, we outline examples of controlled release systems that respond to light irradiation. We believe that this review will contribute to improving the efficiency and safety of chemotherapy.Nanomedicine is a new medical field involving the use of nanoparticles. Early examples of biocompatible nanomedicines include liposomes (Doxil®) and albumin nanoparticles (Abraxane®), and promising new nanomedicines include nanocarriers such as nanomicelles and nanoemulsions. A new trend towards the use of metal-based nanoparticles, including gold nanoparticles, has led to global clinical trials. These particles exhibit novel properties compared to conventional nanomedicines such as liposomes and albumin nanoparticles. These properties hold promise for nanomedicines, and thus the biodistribution and pharmacokinetics of metal-based nanoparticles should be carefully investigated. This had led to an increasing number of clinical trials investigating metal nanoparticles and inorganic nanoparticles. The present review evaluates multi-functional gold nanoparticles described in recent articles and shows that the unique properties of gold nanoparticles are applicable for not only drug delivery, but also for imaging. The combined therapeutic modality between therapeutics and diagnostics is called “theranostics” and is promising for future personalized cancer therapy. This review also introduces recent research from our laboratory involving the use of various kinds of molecules [polyethylene glycol (PEG), drug/cyclodextrin inclusion complexes, biosimilars and small interfering (siRNAs)] loaded onto and/or conjugated with gold nanoparticles.Gold compounds have been employed throughout history to treat various types of disease, from ancient times to the present day. In the year 1985, auranofin, a gold-containing compound, was approved by U.S. Food and Drug Administration (FDA) as a therapeutic agent to target rheumatoid arthritis that would facilitate easy oral drug administration as opposed to conventional intramuscular injection used in treatments. Furthermore, auranofin demonstrates promising results for the treatment of various diseases beyond rheumatoid arthritis, including cancer, neurodegenerative diseases, acquired immune deficiency syndrome, and bacterial and parasitic infections. Various potential novel applications for auranofin have been proposed for treating human diseases. Auranofin has previously been demonstrated to inhibit thioredoxin reductase (TrxR) involved within the thioredoxin (Trx) system that comprises one of the critical cellular redox systems within the body. TrxR comprises the sole known enzyme that catalyzes Trx reduction. With cancers in particular, TrxR inhibition facilitates an increase in cellular oxidative stress and suppresses tumor growth. In this review, we describe the potential of auranofin to serve as an anticancer agent and further drug repurposing to utilize this as a strategy for further appropriate drug developments.

Facebook Pagelike Widget

Who’s Online

Profile picture of Pena Douglas
Profile picture of Malmberg Odonnell
Profile picture of Drachmann Osborne