Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Martinussen Ochoa posted an update 2 days, 7 hours ago

    In 2008, we reported a clinically and genetically new type of autosomal dominant disorder of motor and sensory neuropathy with proximal dominancy in the lower extremities, urinary disturbance, and paroxysmal dry cough. Proteasome inhibitor To identify the nucleotide variant causative of this disease, we reanalyzed the linkage of the original Japanese pedigree including seven newly ascertained subjects with updated information. We assigned the locus of the disease to 1p13.3-q23 (maximum logarithm-of-odds score = 2.71). Exome sequencing for five patients and one healthy relative from the pedigree revealed 2526 patient-specific single-nucleotide variants (SNVs). By rigorous filtering processes using public databases, our linkage results, and functional prediction, followed by Sanger sequencing of the pedigree and 520 healthy Japanese individuals, we identified an intronic SNV in IQGAP3, a gene known to be associated with neurite outgrowth. Upon pathological examination of the sural nerve, moderate, chronic, mainly axonal neuropathy was observed. By histochemical analyses, we observed a patient-specific increase of IQGAP3 expression in the sural nerve. We concluded that the variant of IQGAP3 is associated with the disease in our pedigree.This state-of-the art manuscript highlights our current understanding of maternal immunization-the practice of vaccinating pregnant women to confer protection on them as well as on their young infants, and thereby reduce vaccine-preventable morbidity and mortality. Advances in our understanding of the immunologic processes that undergird a normal pregnancy, studies from vaccines currently available and recommended for pregnant women, and vaccines for administration in special situations are beginning to build the case for safe scale-up of maternal immunization. In addition to well-known diseases, new diseases are emerging which pose threats. Several new vaccines are currently under development and increasingly include pregnant women. In this manuscript, targeted at clinicians, vaccinologists, scientists, public health practitioners, and policymakers, we also outline key considerations around maternal immunization introduction and delivery, discuss noninfectious horizons for maternal immunization, and provide a framework for the clinician faced with immunizing a pregnant woman.Beta thalassemia minor (BTM) is a hereditary disease caused by defective globin synthesis and it is frequently asymptomatic or only mildly anemic. Female sexual dysfunction affects 21-41% of women worldwide. In this study we aimed to investigate female sexual dysfunction in subjects with BTM. A total of 183 subjects who had regular sexual intercourse with marital partners were enrolled in this cross-sectional study. The study group was comprised of 87 subjects with BTM and the control group included 96 healthy subjects. Hemoglobin electrophoresis were performed in all subjects, and all participants were assessed by the Female Sexual Function Index (FSFI) questionnaire and the Arizona Sexual Experience Scale (ASEX). The FSFI scores of the study group were significantly lower than in the control group (19.1 ± 9.6 vs. 25.2 ± 6.6, p  less then  0.001). Conversely, the ASEX scores of the study group were higher than in the control group (15.2 ± 41 vs. 13.5 ± 6.1, p = 0.0085). Sexual functions were poor in subjects with BTM in this study and we conclude that certain metabolic diseases associated with BTM, such as insulin resistance, hyperglycemia and dyslipidemia, may be the main causes of sexual dysfunctions in these subjects.Cryopreservation procedures negatively affect the quality traits of sperm, causing certain changes at structural and molecular levels due to thermal, mechanical, osmotic, and oxidative damage. The objective of this study was to examine the potential of canine adipose-derived mesenchymal stem cells (Ad-MSCs) for providing protection to the dog sperm against cryo-damage. Canine Ad-MSCs were selected on the basis of the significantly higher gene expression for different proteins actively involved in the cell repair including annexin 1 (ANX1), histone H3 (H3) and high mobility group B (HMGB) protein compared to skin fibroblasts. Semen was collected from four healthy dogs by digital manipulation. The washed pooled ejaculates were diluted with buffer 2 (extender) supplemented without Ad-MSCs (Control), with 2.5 × 106 Ad-MSCs/mL (Group 1) or with 5 × 106 Ad-MSCs/mL (Group 2). Group 1 exhibited significantly higher post-thaw motility, live sperm, intact plasma membrane and normal acrosomes than the other groups. Additionally, Group 1 showed significantly higher expression levels of genes related to the repair of membranes (ANX1, dysferlin; DYSF, and fibronectin; FN1) and chromatin material (H3 and HMGB). Protein expression of ANX1, H 3, and FN1 was also statistically more in Group 1 than in Control. The results confirm that canine Ad-MSCs can effectively preserve the quality of frozen-thawed sperm by a reduction in cryoinjury. At an appropriate concentration, Ad-MSCs significantly improve the quality of post-thaw dog sperm.R-spondin2 (RSPO2) is a member of the R-spondin family, which are secreted activators of the WNT/β-catenin (CTNNB1) signaling pathway. In the mouse postnatal ovary, WNT/CTNNB1 signaling is active in the oocyte and in the neighboring supporting cells, the granulosa cells. Although the role of Rspo2 has been previously studied using in vitro experiments, the results are conflicting and the in vivo ovarian function of Rspo2 remains unclear. In the present study, we found that RSPO2/Rspo2 expression is restricted to the oocyte of developing follicles in both human and mouse ovaries from the beginning of the follicular growth. In mice, genetic deletion of Rspo2 does not impair oocyte growth, but instead prevents cell cycle progression of neighboring granulosa cells, thus resulting in an arrest of follicular growth. We further show this cell cycle arrest to be independent of growth promoting GDF9 signaling, but rather associated with a downregulation of WNT/CTNNB1 signaling in granulosa cells. To confirm the contribution of WNT/CTNNB1 signaling in granulosa cell proliferation, we induced cell type specific deletion of Ctnnb1 postnatally.

Facebook Pagelike Widget

Who’s Online

Profile picture of Mcgowan Small
Profile picture of Kane Foss
Profile picture of Fraser Poulsen
Profile picture of Refsgaard Kang
Profile picture of Phelps Wiley
Profile picture of Snow Burke
Profile picture of Bowman Zamora
Profile picture of Song Marsh
Profile picture of Nash Ebbesen