Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Mcintosh Swain posted an update 3 weeks, 1 day ago

    X chromosome inactivation (XCI), determined during development, remains stable after embryonic cell divisions. However, primordial germ cells (PGCs) are exceptions in that XCI is reprogrammed and inactivated X chromosomes are reactivated. Although interactions between PGCs and somatic cells are thought to be important for PGC development, little is known about them. Here, we performed imaging of X chromosome reactivation (XCR) using the ‘Momiji’ mouse system, which can monitor the X chromosome’s inactive and active states using two color fluorescence reporter genes, and investigated whether interactions would affect XCR in PGCs. Based on their expression levels, we found that XCR of the Pgk1 locus began at embryonic day (E)10.5 and was almost complete by E13.5. During this period, PGCs became distributed uniformly in the genital ridge, proliferated, and formed clusters; XCR progressed accordingly. In addition, XCR of the Pgk1 locus preceded that of the Hprt locus, indicating that the timing of epigenetic memory erasure varied according to the locus of each of these X-linked genes. Our results indicate that XCR proceeds along with the proliferation of PGCs clustered within the genital ridge. This article has an associated First Person interview with the first author of the paper.We investigated the migratory orientation of early and late captured dunlins, Calidris alpina, by recording their migratory activity in circular orientation cages during autumn at a staging site in southwest Alaska and performed route simulations to the wintering areas. Two races of dunlins breeding in Alaska have different wintering grounds in North America (Pacific Northwest), and East Asia. Dunlins caught early in autumn (presumably Calidris alpinapacifica) oriented towards their wintering areas (east-southeast; ESE) supporting the idea that they migrate nonstop over the Gulf of Alaska to the Pacific Northwest. We found no difference in orientation between adult and juveniles, nor between fat and lean birds or under clear and overcast skies demonstrating that age, energetic status and cloud cover did not affect the dunlins’ migratory orientation. Later in autumn, we recorded orientation responses towards south-southwest suggesting arrival of the northern subspecies Calidris alpinaarcticola at our site. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for late dunlins migrating to East Asia. Future high-resolution tracking would reveal routes, stopover use including local movements and possible course shifts during migration from Alaska to wintering sites on both sides of the north Pacific Ocean.In the ascidian Ciona intestinalis, basal body parts regenerate distal structures but distal body parts do not replace basal structures. Regeneration involves the activity of adult stem cells in the branchial sac, which proliferate and produce migratory progenitor cells for tissue and organ replacement. Branchial sac-derived stem cells also replenish recycling cells lining the pharyngeal fissures during homeostatic growth. Apoptosis at injury sites occurs early during regeneration and continuously in the pharyngeal fissures during homeostatic growth. Caspase 1 inhibitor, caspase 3 inhibitor, or pan-caspase inhibitor Z-VAD-FMK treatment blocked apoptosis, prevented regeneration, and suppressed branchial sac growth and function. A pharmacological screen and siRNA-mediated gene knockdown indicated that regeneration requires canonical Wnt signaling. Wnt3a protein rescued both caspase-blocked regeneration and branchial sac growth. selleck kinase inhibitor Inhibition of apoptosis did not affect branchial sac stem cell proliferation but prevented the survival of progenitor cells. After bisection across the mid-body, apoptosis occurred only in the regenerating basal fragments, although both fragments contained a part of the branchial sac, suggesting that apoptosis is unilateral at the wound site and the presence of branchial sac stem cells is insufficient for regeneration. The results suggest that apoptosis-dependent Wnt signaling mediates regeneration and homeostatic growth in Ciona.Otitis media (OM) is the most common paediatric disease and leads to significant morbidity. Although understanding of underlying disease mechanisms is hampered by complex pathophysiology, it is clear that epithelial abnormalities underpin the disease. The mechanisms underpinning epithelial remodelling in OM remain unclear. We recently described a novel in vitro model of mouse middle ear epithelial cells (mMEECs) that undergoes mucociliary differentiation into the varied epithelial cell populations seen in the middle ear cavity. We now describe genome wide gene expression profiles of mMEECs as they undergo differentiation. We compared the gene expression profiles of original (uncultured) middle ear cells, confluent cultures of undifferentiated cells and cells that had been differentiated for 7 days at an air liquid interface (ALI). >5000 genes were differentially expressed among the three groups of cells. Approximately 4000 genes were differentially expressed between the original cells and day 0 of ALI culture. The original cell population was shown to contain a mix of cell types, including contaminating inflammatory cells that were lost on culture. Approximately 500 genes were upregulated during ALI induced differentiation. These included some secretory genes and some enzymes but most were associated with the process of ciliogenesis. The data suggest that the in vitro model of differentiated murine middle ear epithelium exhibits a transcriptional profile consistent with the mucociliary epithelium seen within the middle ear. Knowledge of the transcriptional landscape of this epithelium will provide a basis for understanding the phenotypic changes seen in murine models of OM.The incidence of renal cell carcinoma (RCC) is high, and its outcomes remain poor. Mortality is attributable largely to metastatic disease and a dearth of effective therapeutic interventions. The lungs are the most common metastatic site. To elucidate the biological mechanisms underlying pulmonary metastasis and identify superior therapeutic strategies, we developed a novel and clinically relevant murine RCC model exhibiting enhanced pulmonary metastasis. Mice underwent intrarenal implantation using luciferase-expressing Renca, a murine renal adenocarcinoma cell line. Primary renal tumor progression and development of metastatic lung lesions were monitored in live mice using bioluminescent imaging, followed by post-mortem organ assessment. Cells were isolated from pulmonary metastases for reimplantation, followed by repeat monitoring and assessment. This process was repeated once more for a total of two in vivo passages to select for pulmonary metastatic Renca cell subpopulations. However, a single round of in vivo selection was sufficient to produce a near-maximally metastatic subpopulation.

Facebook Pagelike Widget

Who’s Online

Profile picture of Li Churchill
Profile picture of Madsen Carstens
Profile picture of Sexton Werner
Profile picture of Joyce MacGregor
Profile picture of Crockett Ulrich
Profile picture of Coley Oneal
Profile picture of Abdi Scarborough
Profile picture of Hartmann Busch