-
Arsenault Storm posted an update 5 hours, 37 minutes ago
Considerable attention has been paid by the scientific community to detect toxic carbon monoxide (CO) in sub-cellular organelles like mitochondria, lysosomes, nuclei, etc. due to their generation and accumulation through numerous biological processes and their role as signal transducer, therapeutics, etc. Various methods are also available for detection of CO, but fluorescence light-up detection is considered the best due to its easy and accurate sensing capability. As of now, no review is available in the literature dedicated to fluorescent detection of only CO both in vitro and in vivo, but considering the huge amount of work reporting every year, it is necessary to have an account of all the recent significant works devoted to it. This review will give special attention to the most noteworthy development of fluorescent light-up probes for the detection of cellular and sub-cellular targetable CO starting from 2012 and emphasizing also the mechanism of action and the applications.
The COVID-19 pandemic has created a need to prioritize care because of limitation of resources. Owing to the heterogeneity and high prevalence of breast cancers, the need to prioritize care in this vulnerable population is essential. While various medical societies have published recommendations to manage breast disease during the COVID-19 pandemic, most are focused on the Western world and do not necessarily address the challenges of a resource-limited setting.
In this article, we describe our institutional approach for prioritizing care for patients presenting with breast disease.
The breast disease management guidelines were developed and approved with the expertise of the Multidisciplinary Breast Program Leadership Committee (BPLC) of the Aga Khan University, Karachi, Pakistan. These guidelines were inspired, adapted, and modified keeping in view the needs of our resource-limited healthcare system. LY3214996 price These recommendations are also congruent with the ethical guidelines developed by the Center of Biomedant to be universally applicable, and individual cases must be tailored based on physicians’ clinical judgment to provide the best quality care.
COVID-19 pandemic has affected the world from every aspect. Individuals are drained from social, financial, and emotional percussion of this pandemic. Psychosocial consequences are far greater than are being perceived. It is anticipated that once the pandemic is over the psycho-emotional turbulence would shake the whole populations of affected countries.
To review the psychological consequences of COVID-19 pandemic.
A literature search was conducted on major databases from January 2020 to April 2020 with the search terms of Covid-19, Corona virus, psychological, depression, anxiety, phobias, obsessive behaviors, paranoia, parental relationship, marital life and maternal and fetal bond.
Patients with COVID-19 infection are more likely to suffer from a myriad of psychological consequences, and this infection may have profound effect on parenting, relationships, marital life, elderly, and maternal-fetal bond.
Patients with COVID-19 infection are more likely to suffer from a myriad of psychological consequences, and this infection may have profound effect on parenting, relationships, marital life, elderly, and maternal-fetal bond.Among the bifunctional catalysts for water splitting, recently emerged transition-metal single-atom catalysts are theoretically considered to possess high potential, while the experimental activity is not satisfactory yet. Herein, an exceptionally efficient trifunctional metal-nitrogen-carbon (M-N-C) catalyst electrode, composed of a hierarchical carbon matrix embedding isolated nickel atoms with nickel-iron (NiFe) clusters, is presented. 1D microfibers and nanotubes grow sequentially from 2D nanosheets as sacrificial templates via two stages of solution- and solid-phase reactions to form a 1D hierarchy. Exceptionally efficient bifunctional activity with an overpotential of only 13 mV at 10 mA cm-2 toward hydrogen evolution reaction (HER) and an overpotential of 210 mV at 30 mA cm-2 toward oxygen evolution reaction (OER) is obtained, surpassing each monofunctional activity ever reported. More importantly, an overpotential of only 126 and 326 mV is required to drive 500 mA cm-2 toward the HER and OER, respectively. For the first time, industrial-scale water splitting with two bifunctional catalyst electrodes with a current density of 500 mA cm-2 at a potential of 1.71 V is demonstrated. Lastly, trifunctional catalytic activity including oxygen reduction reaction is also proven with a half-wave potential at 0.848 V.Since the introduction of next-generation sequencing, an increasing number of disorders have been discovered to have genetic etiology. To address diverse clinical questions and coordinate research activities that arise with the identification of these rare disorders, we developed the Human Disease Genes website series (HDG website series) an international digital library that records detailed information on the clinical phenotype of novel genetic variants in the human genome (https//humandiseasegenes.info/). Each gene website is moderated by a dedicated team of clinicians and researchers, focused on specific genes, and provides up-to-date-including unpublished-clinical information. The HDG website series is expanding rapidly with 424 genes currently adopted by 325 moderators from across the globe. On average, a gene website has detailed phenotypic information of 14.4 patients. There are multiple examples of added value, one being the ARID1B gene website, which was recently utilized in research to collect clinical information of 81 new patients. Additionally, several gene websites have more data available than currently published in the literature. In conclusion, the HDG website series provides an easily accessible, open and up-to-date clinical data resource for patients with pathogenic variants of individual genes. This is a valuable resource not only for clinicians dealing with rare genetic disorders such as developmental delay and autism, but other professionals working in diagnostics and basic research. Since the HDG website series is a dynamic platform, its data also include the phenotype of yet unpublished patients curated by professionals providing higher quality clinical detail to improve management of these rare disorders.