Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Oconnor Miles posted an update 3 weeks, 1 day ago

    Under current threats, even the more common species are in peril, calling for a reevaluation of hazards and conservation strategies that traditionally target already rare and endangered species only.Although widespread declines in insect biomass and diversity are increasing concerns within the scientific community, it remains unclear whether attention to pollinator declines has also increased within information sources serving the general public. Examining patterns of journalistic attention to the pollinator population crisis can also inform efforts to raise awareness about the importance of declines of insect species providing ecosystem services beyond pollination. We used the Global News Index developed by the Cline Center for Advanced Social Research at the University of Illinois at Urbana-Champaign to track news attention to pollinator topics in nearly 25 million news items published by two American national newspapers and four international wire services over the past four decades. We found vanishingly low levels of attention to pollinator population topics relative to coverage of climate change, which we use as a comparison topic. In the most recent subset of ∼10 million stories published from 2007 to 2019, 1.39% (137,086 stories) refer to climate change/global warming while only 0.02% (1,780) refer to pollinator populations in all contexts, and just 0.007% (679) refer to pollinator declines. Substantial increases in news attention were detectable only in US national newspapers. We also find that, while climate change stories appear primarily in newspaper “front sections,” pollinator population stories remain largely marginalized in “science” and “back section” reports. At the same time, news reports about pollinator populations increasingly link the issue to climate change, which might ultimately help raise public awareness to effect needed policy changes.We review changes in the status of butterflies in Europe, focusing on long-running population data available for the United Kingdom, the Netherlands, and Belgium, based on standardized monitoring transects. In the United Kingdom, 8% of resident species have become extinct, and since 1976 overall numbers declined by around 50%. In the Netherlands, 20% of species have become extinct, and since 1990 overall numbers in the country declined by 50%. Distribution trends showed that butterfly distributions began decreasing long ago, and between 1890 and 1940, distributions declined by 80%. In Flanders (Belgium), 20 butterflies have become extinct (29%), and between 1992 and 2007 overall numbers declined by around 30%. A European Grassland Butterfly Indicator from 16 European countries shows there has been a 39% decline of grassland butterflies since 1990. selleck products The 2010 Red List of European butterflies listed 38 of the 482 European species (8%) as threatened and 44 species (10%) as near threatened (note that 47 species were not assessed). A country level analysis indicates that the average Red List rating is highest in central and mid-Western Europe and lowest in the far north of Europe and around the Mediterranean. The causes of the decline of butterflies are thought to be similar in most countries, mainly habitat loss and degradation and chemical pollution. Climate change is allowing many species to spread northward while bringing new threats to susceptible species. We describe examples of possible conservation solutions and a summary of policy changes needed to conserve butterflies and other insects.Moths are the most taxonomically and ecologically diverse insect taxon for which there exist considerable time-series abundance data. There is an alarming record of decreases in moth abundance and diversity from across Europe, with rates varying markedly among and within regions. Recent reports from Costa Rica reveal steep cross-lineage declines of caterpillars, while other sites (Ecuador and Arizona, reported here) show no or only modest long-term decreases over the past two decades. Rates of decline for dietary and ecological specialists are steeper than those for ecologically generalized taxa. Additional traits commonly associated with elevated risks include large wingspans, small geographic ranges, low dispersal ability, and univoltinism; taxa associated with grasslands, aridlands, and nutrient-poor habitats also appear to be at higher risk. In temperate areas, many moth taxa limited historically by abiotic factors are increasing in abundance and range. We regard the most important continental-scale stressors to include reductions in habitat quality and quantity resulting from land-use change and climate change and, to a lesser extent, atmospheric nitrification and introduced species. Site-specific stressors include pesticide use and light pollution. Our assessment of global macrolepidopteran population trends includes numerous cases of both region-wide and local losses and studies that report no declines. Spatial variation of reported losses suggests that multiple stressors are in play. With the exception of recent reports from Costa Rica, the most severe examples of moth declines are from Northern Hemisphere regions of high human-population density and intensive agriculture.Major declines in insect biomass and diversity, reviewed here, have become obvious and well documented since the end of World War II. Here, we conclude that the spread and intensification of agriculture during the past half century is directly related to these losses. In addition, many areas, including tropical mountains, are suffering serious losses because of climate change as well. Crops currently occupy about 11% of the world’s land surface, with active grazing taking place over an additional 30%. The industrialization of agriculture during the second half of the 20th century involved farming on greatly expanded scales, monoculturing, the application of increasing amounts of pesticides and fertilizers, and the elimination of interspersed hedgerows and other wildlife habitat fragments, all practices that are destructive to insect and other biodiversity in and near the fields. Some of the insects that we are destroying, including pollinators and predators of crop pests, are directly beneficial to the crops.

Facebook Pagelike Widget

Who’s Online

Profile picture of Bates Crowder
Profile picture of Juel Krebs
Profile picture of Kaufman Palm
Profile picture of Crowley Hamrick
Profile picture of Oliver Lysgaard
Profile picture of Guthrie McCarty
Profile picture of Godwin Cross
Profile picture of Schaefer Boykin
Profile picture of Schofield Astrup
Profile picture of Bennetsen Breum
Profile picture of Kromann Hauser
Profile picture of Donaldson Alexander
Profile picture of Pallesen Salomonsen
Profile picture of Pappas Broch
Profile picture of Berman Bruhn