Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Hawkins Mullen posted an update 7 hours, 10 minutes ago

    Moreover, this pilot study demonstrated the need to deliver a more effective trauma treatment teaching for hemorrhagic lesions and that hemorrhagic trauma simulators can be used to train and evaluate different scenarios.The usage of insects as an alternative protein source for broiler feeds may help to reduce the dependency on soybean meal (SBM) imports. Therefore, the present study aimed to evaluate the replacement of 15 (SL15) or 30% (SL30) of crude protein (CP) from SBM with Hermetia illucens (HI) defatted larvae meal regarding broiler performance, carcass traits, apparent ileal digestibility, intestinal morphology, and microbial metabolites. Concerning the performance, body weight was similar for the control (CON) and SL15, but lower for SL30 during all feeding phases. In addition, average daily feed intake was higher in SL15 and SL30 compared to CON in the starter phase, but this effect vanished during grower and finisher phase. The apparent ileal digestibility decreased for CP and some amino acids with increasing HI larvae meal in the diet. No or marginal alterations were observed for the intestinal morphometry as well as cecal microbial metabolites. In conclusion, partial replacement of 15% SBM CP with HI larvae meal in broiler diets without impairing animal performance or health seems possible. The growth suppression with 30% CP substitution may be caused by reduced apparent ileal digestibility but could not be clearly associated with adverse effects of hindgut fermentation or altered gut morphology.The aim of this work was to carry out a systematic literature review focused on the scientific production, trends, and characteristics of a knowledge domain of high worldwide importance, namely, the use of chitosan as a coating for postharvest disease biocontrol in fruits and vegetables, which are generated mainly by fungi and bacteria such as Aspergillus niger, Rhizopus stolonifera, and Botrytis cinerea. For this, the analysis of 875 published documents in the Scopus database was performed for the years 2011 to 2021. The information of the keywords’ co-occurrence was visualized and studied using the free access VOSviewer software to show the trend of the topic in general. RHPS4 The study showed a research increase of the chitosan and nanoparticle chitosan coating applications to diminish the postharvest damage by microorganisms (fungi and bacteria), as well as the improvement of the shelf life and quality of the products.The new genus Morinagamyces is introduced herein to accommodate the fungus Apiosordaria vermicularis as inferred from a phylogenetic study based on sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and partial fragments of ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Morinagamyces vermicularis was analyzed for the production of secondary metabolites, resulting in the isolation of a new depsipeptide named morinagadepsin (1), and the already known chaetone B (3). While the planar structure of 1 was elucidated by extensive 1D- and 2D-NMR analysis and high-resolution mass spectrometry, the absolute configuration of the building blocks Ala, Val, and Leu was determined as -l by Marfey’s method. The configuration of the 3-hydroxy-2-methyldecanyl unit was assigned as 22R,23R by J-based configuration analysis and Mosher’s method after partial hydrolysis of the morinagadepsin to the linear derivative compound 2. Compound 1 showed cytotoxic activity against the mammalian cell lines KB3.1 and L929, but no antimicrobial activity against the fungi and bacteria tested was observed, while 2 was inactive. Compound 3 was weakly cytotoxic against the cell line L929, but did not show any antimicrobial activity.The pathogenesis of several neurodegenerative diseases such as Alzheimer’s or Huntington’s disease has been associated with metabolic dysfunctions caused by imbalances in the brain and cerebral spinal fluid levels of neuroactive metabolites. Kynurenine monooxygenase (KMO) is considered an ideal therapeutic target for the regulation of neuroactive tryptophan metabolites. Despite significant efforts, the known KMO inhibitors lack blood-brain barrier (BBB) permeability and upon the mimicking of the substrate binding mode, are subject to produce reactive oxygen species as a side reaction. The computational drug design is further complicated by the absence of complete crystal structure information for human KMO (hKMO). In the current work, we performed virtual screening of readily available compounds using several protein-ligand complex pharmacophores. Each of the pharmacophores accounts for one of three distinct reported KMO protein-inhibitor binding conformations. As a result, six novel KMO inhibitors were discovered based on an in vitro fluorescence assay. Compounds VS1 and VS6 were predicted to be BBB permeable and avoid the hydrogen peroxide production dilemma, making them valuable, novel hit compounds for further drug property optimization and advancement in the drug design pipeline.Pentraxin 3 (PTX3) is a glycoprotein belonging to the humoral arm of innate immunity that participates in the body’s defence mechanisms against infectious diseases. It has recently been defined as a multifunctional protein, given its involvement in numerous physiological and pathological processes, as well as in the pathogenesis of age-related diseases such as osteoporosis. Based on this evidence, the aim of our study was to investigate the possible role of PTX3 in both the osteoblastic differentiation and calcification process to this end, primary osteoblast cultures from control and osteoporotic patients were incubated with human recombinant PTX3 (hrPTX3) for 72 h. Standard osteinduction treatment, consisting of β-glycerophosphate, dexamethasone and ascorbic acid, was used as control. Our results showed that treatment with hrPTX3, as well as with the osteogenic cocktail, induced cell differentiation towards the osteoblastic lineage. We also observed that the treatment not only promoted an increase in cell proliferation, but also the formation of calcification-like structures, especially in primary cultures from osteoporotic patients. In conclusion, the results reported here suggest the involvement of PTX3 in osteogenic differentiation, highlighting its osteoinductive capacity, like the standard osteoinduction treatment. Therefore, this study opens new and exciting perspectives about the possible role of PTX3 as biomarker and therapeutic agent for osteoporosis.

Facebook Pagelike Widget

Who’s Online

Profile picture of Morton Byers
Profile picture of Andreassen Daniels
Profile picture of Carlton Vargas
Profile picture of Have Friis
Profile picture of Thomas Grau
Profile picture of Walter Teague
Profile picture of Steen Bering
Profile picture of Pritchard Braswell
Profile picture of Asmussen Duelund
Profile picture of Hsu McGee