Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Adler Hegelund posted an update 2 days, 8 hours ago

    Fusarium head blight (FHB) disease that occurs in wheat is caused by Fusarium graminearum and is a major risk to wheat yield. Although several research efforts focusing on FHB have been conducted in the past several decades, conditions have become more critical due to the increase in its virulent forms. In such a scenario, conferring complete resistance in plants seems to be difficult for handling this issue. The phenotyping for FHB and finding a solution for it at the genetic level comprises a long-term process as FHB infection is largely affected by environmental conditions. Modern molecular strategies have played a crucial role in revealing the host-pathogen interaction in FHB. The integration of molecular biology-based methods such as genome-wide association studies and marker-based genomic selection has provided potential cultivars for breeding programs. In this review, we aim at outlining the contemporary status of the studies conducted on FHB in wheat. The influence of FHB in wheat on animals and human health is also discussed. MALT1 inhibitor mouse In addition, a summary of the advancement in the molecular technologies for identifying and developing the FHB-resistant wheat genetic resources is provided. It also suggests the future measures that are required to reduce the world’s vulnerability to FHB which was one of the main goals of the US Wheat and Barley Scab Initiative. © King Abdulaziz City for Science and Technology 2020.The Src homology 3 and cysteine-rich domain 3 gene (STAC3) encodes a protein containing both a cysteine-rich domain and two Src (sarcoma) homology 3 domains (SH3). STAC3 is specifically expressed in skeletal muscle and plays an important role in skeletal muscle development, but the explicit sequence and function of chicken SATC3 remain unknown. In the current study, we found the full-length chicken STAC3 cDNA to be 1383 bp long, with a 1092 bp open reading frame that harbors one cysteine-rich C1 domain and two SH3 domains. Tissue distribution analysis reveals chicken STAC3 mRNA only in skeletal muscle among 12 chicken tissues examined by reverse transcription PCR. Both cholecystokinin octapeptide analysis and a 5-ethynyl-2′-deoxyuridine assay suggest that neither STAC3 overexpression nor knockdown has any effect on the proliferation of chicken skeletal muscle satellite cells. However, STAC3 knockdown significantly increases the mRNA expression of MyoG, MyoD, Mb, and MyHC, and the protein abundance of MyHC and MyoG, whereas the opposite result is found in STAC3 overexpressed cells. We conclude that the STAC3 gene is expressed specifically in skeletal muscle and is a negative regulator of skeletal muscle satellite cell differentiation in chicken. © King Abdulaziz City for Science and Technology 2020.We investigated antibiotic resistance levels among bla NDM -positive (n = 9) and -negative (n = 65) A. baumannii clinical isolates collected in 2010 and 2015 from Alexandria Main University Hospital, Egypt using disc diffusion and minimum inhibitory concentration (MIC) determination. Plasmids from bla NDM -positive isolates were transformed into a carbapenem-susceptible A. baumannii (CS-AB) isolate to assess the role of plasmid transfer in mediating carbapenem resistance. Imipenem, meropenem, and ertapenem MIC90 values against bla NDM -positive isolates were 128, > 256, and 256 µg/mL, respectively. Plasmid isolation and polymerase chain reaction revealed that bla NDM was plasmid mediated. The plasmids were electroporated into the cells of a CS-AB isolate at an efficiency of 1.3 × 10-8 to 2.6 × 10-7, transforming them to bla NDM -positive carbapenem-resistant cells with an imipenem MIC increase of 256-fold. In addition to carbapenem resistance, the bla NDM -positive isolates also exhibited higher levels of cephalosporins, tetracycline, aminoglycosides, fluoroquinolones, and colistin resistance than the bla NDM -negative isolates. Acquisition of bla NDM -carrying plasmids dramatically increased imipenem resistance among A. baumannii isolates. Intriguingly, bla NDM -positive isolates also showed a high degree of resistance to antibiotics of different classes. The potential co-existence of different resistance determinants on A. baumannii plasmids and their possible transfer owing to the natural competence of the pathogen are especially alarming. More effective infection control and antibiotic stewardship programs are needed to curb the spread and treat such infections in both hospital and community settings. © King Abdulaziz City for Science and Technology 2020.A monopartite begomovirus associated with betasatellite was identified from Osteospermum fruticosum (Cape Daisy) showing severe yellowing vein net symptoms in Rajasthan, India through molecular characterization. The DNA-A shared the highest nucleotide (96.61%) identity to Chilli leaf curl Ahmedabad virus (KM880103), while the betasatellite depicted the highest sequence similarity (99.28%) to Chilli leaf curl betasatellite (JF706231, 99.28%). Based on the sequence identity with other begomoviruses known to date, they were recognized as Chilli leaf curl virus (CDI, MH355641) and Chilli leaf curl betasatellite (CDB1, MH355642), respectively. Phylogenetic analysis showed that DNA-A (CD1) clustered with ChiLCV Goa (KP235539), whereas the betasatellite (CDB1) clustered with ChiLCB Jodhapur (JF70623). Recombination events were observed among the clades of ChiLCV, showing intragenic recombination in Rep (C1) and coat protein (V1/AV1) regions. To our knowledge, this is the first report of ChiLC begomovirus strain affecting O. fruticosum. © King Abdulaziz City for Science and Technology 2020.Agriculture is the source of food for both humans and animals. With the growing population demands, agricultural production needs to be scaled up where nanotechnology can play a significant role. The use of nanotechnology in agriculture can manage plant disease and growth for better and quality output. Therefore, this review focuses on the use of various nanoparticles for detection of nutrients and contaminants, nanosensors for monitoring the environmental stresses and crop conditions as well as the use of nanotechnology for plant pathogen detection and crop protection. In addition, the delivery of plant growth regulators and agrichemicals like nanopesticides and nanofertilizers to the plants along with the delivery of DNA for targeted genetic engineering and production of genetically modified (GM) crops are discussed briefly. Further, the future concerns regarding the use of nanoparticles and their possible toxicity, impact on the agriculture and ecosystem needs to be assessed along with the assessment of the nanoparticles and GM crops on the environment and human health.

Facebook Pagelike Widget

Who’s Online

Profile picture of Farah Pilegaard
Profile picture of Munksgaard Duran
Profile picture of Johnsen Bigum
Profile picture of Grantham McDermott
Profile picture of Lauridsen McCollum
Profile picture of Salas Krog
Profile picture of Vinther Lundberg
Profile picture of Abbott Dreier
Profile picture of Hamann Bille