-
Abdi Braswell posted an update 2 weeks, 6 days ago
The impact of doping is preserved when the trap levels associated with the dopants lie in the bandgap of the bilayer. On the other hand, the pristine neutral layer can get doped to an extent depending on how its electrons can fill the trap levels associated with the other component. Altogether, the present theoretical work demonstrates that the properties of the bilayers are not simply defined by additive rules of the components.Nanostructured metal oxides, such as zinc oxide (ZnO), are considered as excellent materials for the fabrication of highly sensitive and selective electrochemical sensors and biosensors due to their good properties, including a high specific surface area, high catalytic efficiency, strong adsorption ability, high isoelectric point (IEP, 9.5), wide band gap (3.2 eV), biocompatibility and high electron communication features. Thus, ZnO nanostructures are widely used to fabricate efficient electrochemical sensors and biosensors for the detection of various analytes. In this review, we have discussed the synthesis of ZnO nanostructures and the advances in various ZnO nanostructure-based electrochemical sensors and biosensors for medical diagnosis, pharmaceutical analysis, food safety, and environmental pollution monitoring.The antibiotic susceptibility test (AST) is a general laboratory procedure for bacterial identification and characterization and can be utilized to determine effective antimicrobials for individual patients. Due to the low bacterial concentration, conventional AST usually requires a prolonged bacterial culture time and a labor-intensive sample pretreatment process. Therefore, it cannot perform timely diagnosis or treatment, which results in a high mortality rate for seriously infected patients. To address this problem, we developed a microfluidic microwell device integrating surface-enhanced Raman scattering (SERS) technology, or the so called the Microwell-SERS system, to enable a rapid and high-throughput AST. Our results show that the Microwell-SERS system can successfully encapsulate bacteria in a miniaturized microwell with a greatly increased effective bacteria concentration, resulting in a shorter bacterial culture time. By attaching a microchannel onto the microwell, a smooth liquid and air exchange can purify the surrounding buffer and isolate bacteria in an individual microwell for independent SERS measurement. For proof-of-concept, we demonstrated a 2 h AST on susceptible and resistant E. coli and S. aureus with a concentration of 103 CFU mL-1 in the Microwell-SERS system, whereas the previous SERS-AST method required 108 CFU mL-1 bacterial suspension droplets dispensing on a SERS substrate. Based on the above features, we envision that the Microwell-SERS system could achieve highly sensitive, label-free, bacteria detection and rapid AST to enable timely and accurate bacterial infection disease diagnosis.The biocompatible, injectable and high water-swollen nature of hydrogels makes them a popular candidate to imitate the extracellular matrix (ECM) for tissue engineering both in vitro and in vivo. However, commonly used covalently cross-linked hydrogels, despite their stability and tunability, are elastic and deteriorate as bulk material degrades which would impair proper cell function. To improve these deficiencies, here, we present a self-recovering cross-linked hydrogel formed instantaneously with functionalized poly(ethylene glycol) as a basis. We combine covalent cross-links introduced via a strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction and non-covalent links between phosphonate groups and calcium ions. By adjusting the ratios of non-covalent and covalent cross-links, we synthesized these dual cross-linked (DC) hydrogels that displayed storage moduli below ∼2000 Pa and relaxation times from seconds to minutes. The gels recovered to 41-96% of their initial mechanical properties after two subsequent strain failures. Cryo-scanning electron microscopy revealed that DC hydrogels containing approximately equal amounts of covalent and non-covalent cross-links displayed phase separation. Finally, we functionalized the DC hydrogels by incorporating an integrin binding motif, RGDS, to provide a biocompatible environment for human mesenchymal stem cells (HMSCs) by facilitating adhesion inside the gel network. Inside these DC gels HSMCs displayed a viability up to 73% after five days of cell culture.The self-assembly of nanoparticles into highly ordered crystals is largely influenced by variations in the size and shape of the constituent particles, with crystallization generally not observed if their polydispersity is too large. Necrostatin 1S research buy Here, we report on size selectivity in the self-assembly of rounded cubic maghemite nanoparticles into three-dimensional mesocrystals. Different X-ray scattering techniques are used to study and compare a nanoparticle dispersion that is used later for self-assembly, an ensemble of mesocrystals grown on a substrate, as well as an individual mesocrystal. The individual μm-sized mesocrystal is isolated using a focused-ion-beam-based technique and investigated by the diffraction of a micro-focused X-ray beam. Structural analysis reveals that individual mesocrystals have a drastically smaller size dispersity of nanoparticles than that in the initial dispersion, implying very strong size selectivity during self-assembly. The small size dispersity of the nanoparticles within individual mesocrystals is accompanied by a very narrow lattice parameter distribution. In contrast, the lattice parameter distribution within all mesocrystals of an ensemble is about four times wider than that of individual mesocrystals, indicating significant size fractionalization between mesocrystals during self-assembly. The small size dispersity within each mesocrystal has important implications for their physical properties.We report the synthesis and comprehensive characterization of a new platinum-AIEgen coordination complex. Possessing a high 1O2 quantum yield of 0.75 in water, the complex efficiently kills cisplatin-resistant cancer cells under mild white light irradiation. Its strong fluorescence upon binding with proteins also enables direct visualization of its intracellular distribution.