-
Duncan Nilsson posted an update 3 weeks ago
Face photo-sketch synthesis aims at generating a facial sketch/photo conditioned on a given photo/sketch. It covers wide applications including digital entertainment and law enforcement. Precisely depicting face photos/sketches remains challenging due to the restrictions on structural realism and textural consistency. While existing methods achieve compelling results, they mostly yield blurred effects and great deformation over various facial components, leading to the unrealistic feeling of synthesized images. To tackle this challenge, in this article, we propose using facial composition information to help the synthesis of face sketch/photo. Especially, we propose a novel composition-aided generative adversarial network (CA-GAN) for face photo-sketch synthesis. In CA-GAN, we utilize paired inputs, including a face photo/sketch and the corresponding pixelwise face labels for generating a sketch/photo. Next, to focus training on hard-generated components and delicate facial structures, we propose a compositional reconstruction loss. In addition, we employ a perceptual loss function to encourage the synthesized image and real image to be perceptually similar. Finally, we use stacked CA-GANs (SCA-GANs) to further rectify defects and add compelling details. The experimental results show that our method is capable of generating both visually comfortable and identity-preserving face sketches/photos over a wide range of challenging data. In addition, our method significantly decreases the best previous Fréchet inception distance (FID) from 36.2 to 26.2 for sketch synthesis, and from 60.9 to 30.5 for photo synthesis. Besides, we demonstrate that the proposed method is of considerable generalization ability.Recently, deep convolutional neural networks (CNNs) have been successfully applied to the single-image super-resolution (SISR) task with great improvement in terms of both peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). However, most of the existing CNN-based SR models require high computing power, which considerably limits their real-world applications. In addition, most CNN-based methods rarely explore the intermediate features that are helpful for final image recovery. To address these issues, in this article, we propose a dense lightweight network, called MADNet, for stronger multiscale feature expression and feature correlation learning. Specifically, a residual multiscale module with an attention mechanism (RMAM) is developed to enhance the informative multiscale feature representation ability. Furthermore, we present a dual residual-path block (DRPB) that utilizes the hierarchical features from original low-resolution images. To take advantage of the multilevel features, dense connections are employed among blocks. The comparative results demonstrate the superior performance of our MADNet model while employing considerably fewer multiadds and parameters.This article investigates the attitude stabilization problem of a rigid spacecraft with actuator saturation and failures. Two neural network-based control schemes are proposed using anti-saturation adaptive strategies. To satisfy the input constraint, we design two controllers in a saturation function structure. Taking into account the modeling uncertainties, external disturbances, and adverse effects from actuator faults and failures, the first anti-saturation adaptive controller is implemented based on radial basis function neural networks (RBFNNs) with a fixed-time terminal sliding mode (FTTSM) containing a tunable parameter. Then, we upgrade the proposed controller to a fully adaptive-gain anti-saturation version, in order to strengthen the robustness and adaptivity with respect to actuator faults and failures, unknown mass properties, and external disturbances. In the two schemes, all of the designed adaptive parameters are scalars, thus they only require light computational load and can avoid the redesign process of the controller during spacecraft operation. Finally, the feasibility of the proposed methods is illustrated via two numerical examples.In this article, a simple yet effective method, called a two-phase learning-based swarm optimizer (TPLSO), is proposed for large-scale optimization. Inspired by the cooperative learning behavior in human society, mass learning and elite learning are involved in TPLSO. In the mass learning phase, TPLSO randomly selects three particles to form a study group and then adopts a competitive mechanism to update the members of the study group. Then, we sort all of the particles in the swarm and pick out the elite particles that have better fitness values. In the elite learning phase, the elite particles learn from each other to further search for more promising areas. The theoretical analysis of TPLSO exploration and exploitation abilities is performed and compared with several popular particle swarm optimizers. Comparative experiments on two widely used large-scale benchmark datasets demonstrate that the proposed TPLSO achieves better performance on diverse large-scale problems than several state-of-the-art algorithms.Smartphones are changing humans’ lifestyles. Mobile applications (apps) on smartphones serve as entries for users to access a wide range of services in our daily lives. The apps installed on one’s smartphone convey lots of personal information, such as demographics, interests, and needs. This provides a new lens to understand smartphone users. However, it is difficult to compactly characterize a user with his/her installed app list. In this article, a user representation framework is proposed, where we model the underlying relations between apps and users with Boolean matrix factorization (BMF). It builds a compact user subspace by discovering basic components from installed app lists. AZD3514 Each basic component encapsulates a semantic interpretation of a series of special-purpose apps, which is a reflection of user needs and interests. Each user is represented by a linear combination of the semantic basic components. With this user representation framework, we use supervised and unsupervised learning methods to understand users, including mining user attributes, discovering user groups, and labeling semantic tags to users.