Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Weiner Villumsen posted an update 8 hours, 38 minutes ago

    In addition, the presented MOFs display strong characteristic luminescence in the UV-vis-NIR region. Moreover, the incorporation of the spiro-center linker into the framework can efficiently produce two-photon-excited photoluminescence with a large action cross-section value, which also benefited from the high packing density of the nonlinear optical chromophore linker in the interpenetrated structure.A suitable insulating polymer material that is compatible with the fabrication process of organic transistors and has excellent electrical properties is critically required for the next-generation flexible organic electronics. In this study, using a one-step polymerization method, we synthesized two different solution-processable polyimides (PIs) incorporated with abundant trifluoromethyl groups. Not only were the two resulting PIs-termed 6FDA-6FDAM-PI and 6FDA-TFMB-PI-well soluble in organic solvents, but also they showed transparent and colorless optical properties. The fluorinated PI films showed smooth surface topographies and surface energy values that were appropriate for their use in bottom-gate organic transistors. Organic transistors separately fabricated with 6FDA-6FDAM-PI and 6FDA-TFMB-PI as the gate insulators showed excellent device performance and electrical stability under various testing conditions, especially for pentacene-based devices. drug discovery The excellent performance of the devices with fluorinated PIs was attributed to the enhanced microstructure of the organic semiconductor and the fluorine-rich characteristic of the underlying gate insulator. Furthermore, organic complementary circuits including the basic logic gates of NOT, NOR, and NAND were demonstrated using these devices.The metal-organic framework (MOF)-type MFM-300(Sc) exhibits a combined physisorption and chemisorption capture of H2S, leading to a high uptake (16.55 mmol g-1) associated with high structural stability. The irreversible chemisorbed sulfur species were identified as low-order polysulfide (n = 2) species. The isostructural MFM-300(In) was demonstrated to promote the formation of different polysulfide species, paving the way toward a new methodology to incorporate polysulfides within MOFs for the generation of novel MOF-lithium/sulfur batteries.In contrast to classical ion mobility spectrometers (IMS) operating at ambient pressure, the high kinetic energy ion mobility spectrometer (HiKE-IMS) is operated at reduced pressures between 10-40 mbar. In HiKE-IMS, ions are generated in a reaction region before they are separated in a drift region. Due to the operation at reduced pressure, it is possible to reach high reduced electric field strengths up to 120 Td in both the reaction as well as drift region, resulting in a pronounced decrease in chemical cross sensitivities and a significant enhancement of the dynamic range. Until now though, only limited knowledge about the ionization pathways in HiKE-IMS is available. Typically, proton bound water clusters, H+(H2O)n, are the most abundant positive reactant ion species in classical IMS with atmospheric chemical ionization sources. However, at reduced pressure and increased effective ion temperature, the reactant ion population significantly changes. As the ionization efficiency of analyte molecules in HiKE-IMS strongly depends on the reactant ion population, a detailed knowledge of the reactant ion population generated in HiKE-IMS is essential. Here, we present a coupling stage of the HiKE-IMS to a mass spectrometer enabling the identification of ion species and the investigation of ion molecule reactions prevailing in HiKE-IMS. In the present study, the HiKE-IMS-MS is used to identify positive reactant ion populations in both, purified air and nitrogen, respectively. The experimental data suggest the generation of systems of clustered primary ions (H+(H2O)n, NO+(H2O)m, and O2+(H2O)p), which most probably serve as reactant ions. Their relative abundances highly depend on the reduced electric field strength in the reaction region. Furthermore, their effective mobilities are studied as a function of the reduced electric field strength in the drift region.The electrification of crystalline deposits of organic compounds under high vacuum was measured and quantified. A group of compounds that produce multiply charged ions by matrix-assisted ionization were deposited on a metal plate, and the current was amplified and recorded; the total charge was obtained by integration of the current. Signals of several hundred picoamperes were obtained within 10 s of the application of high vacuum and persisted for several minutes as the compounds sublimed. The magnitude and sign of the charge were matrix dependent and were affected by the presence of organic or mineral acid in the crystalline deposit, as well as by the application of an electric field. The observations are interpreted as surface electrification caused by the emission of small charged matrix particles during sublimation, with ionic charge carriers comprising protons and hydroxide ions.The monofunctional primary complexes cis-[PtCl(NH3)2(L)]+, formed by the reaction of cisplatin, a major chemotherapeutic agent, with four nucleobases L, i.e., uracil (U), 2-thiouracil (2SU), 4-thiouracil (4SU), and 2,4-dithiouracil (24dSU), have been studied by a combination of infrared multiple photon dissociation (IRMPD) action spectroscopy in both the fingerprint (900-1900 cm-1) and the N-H/O-H stretching (3000-3800 cm-1) ranges, energy-resolved collision-induced dissociation (CID) mass spectrometry, and density functional calculations at the B3LYP/LACVP/6-311G** level. On the basis of the comparison across the experimental features and the linear IR spectra of conceivable structures, the cisplatin residue is found to promote a monodentate interaction preferentially with the O4(S4) atoms of the canonical forms of U, 4SU, and 24dSU and to the S2 atom of 2SU, yielding the most stable structures. Additional absorptions reveal the presence of minor, alternative tautomers in the sampled ion populations of 2SU and 24dSU, underlying the ability of cisplatin to increase the prospect of (therapeutically beneficial) nucleic acid strand disorder. Implication of these evidence may provide insights into drug mechanism and design.

Facebook Pagelike Widget

Who’s Online

Profile picture of Abbott Lindholm
Profile picture of bimiv50163
Profile picture of Fraser Poulsen
Profile picture of Guldborg Stokholm
Profile picture of Small Kristiansen
Profile picture of Dreyer McWilliams
Profile picture of Anker Hood
Profile picture of Rowland Voigt
Profile picture of Aagesen McCulloch
Profile picture of Holst Bentzen
Profile picture of Combs Estes