Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Rogers Lockhart posted an update 2 weeks, 6 days ago

    Importantly, melanoma patients in different stages of disease showed a significant upregulation of GARP on the platelet surface, correlating to a reduced responsiveness to immunotherapy. In conclusion, our data indicate that platelets induce peripheral Treg via GARP. These findings might contribute to diseases such as cancer-associated thrombocytosis, wherein poor prognosis and metastasis are associated with high counts of circulating platelets.In this study, ternary composites of polyaniline (PANI) with manganese dioxide (MnO2) nanorods and carbon nanotubes (CNTs) were prepared by employing a hydrothermal methodology and in-situ oxidative polymerization of aniline. The morphological analysis by scanning electron microscopy showed that the MnO2 possessed nanorod like structures in its pristine form, while in the ternary PANI@CNT/MnO2 composite, coating of PANI over CNT/MnO2, rods/tubes were evidently seen. The structural analysis by X-ray diffraction and X-ray photoelectron spectroscopy showed peaks corresponding to MnO2, PANI and CNT, which suggested efficacy of the synthesis methodology. The electrochemical performance in contrast to individual components revealed the enhanced performance of PANI@CNT/MnO2 composite due to the synergistic/additional effect of PANI, CNT and MnO2 compared to pure MnO2, PANI and PANI@CNT. The PANI@CNT/MnO2 ternary composite exhibited an excellent specific capacity of 143.26 C g-1 at a scan rate of 3 mV s-1. The cyclic stability of the supercapattery (PANI@CNT/MnO2/activated carbon)-consisting of a battery type electrode-demonstrated a gradual increase in specific capacity with continuous charge-discharge over ~1000 cycles and showed a cyclic stability of 119% compared to its initial value after 3500 cycles.A new adsorbent material was obtained by functionalization of chitosan with hexa-decyl-trimethyl-ammonium chloride and tested as an adsorbent for Cd(II) ions. Functionalization is due to the desire to improve the adsorbent properties of the biopolymer used for removal of metallic ions. Obtained material was characterized by FTIR (Fourier Transform InfraRed spectroscopy), SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray Spectroscopy). To prove the Cd(II) adsorption mechanism, we performed adsorption tests determining influence of biopolymer ratio, pH, contact time, temperature and Cd(II) initial concentration. Obtained experimental data were modeled using two kinetics models pseudo-first-order and pseudo-second-order models. Cd(II) adsorption kinetics was better described by pseudo-second-order model. Further, experimental data were fitted using three different adsorption isotherms Langmuir, Freundlich and Sips. The studied adsorption process is well described by the Sips adsorption isotherm, when the maximum adsorption capacity value is near the experimental one. Likewise, we evaluated the values of thermodynamic parameters which indicate that the studied process is an endothermic and spontaneous one, being a physical adsorption. Prepared adsorbent materials have a maximum adsorption capacity of 204.3 mg Cd2+ per gram at pH > 4.0 and 298 K. In addition, this material was reused for Cd2+ recovery for 20 times.This study aims to investigate the interactions appearing when the beta-2-glycoprotein-1 binds to a lipid bilayer. The inter- and intra-molecular forces acting between the two macromolecular systems have been investigated using a molecular dynamics simulation method. The importance of water bridges has also been addressed. Additionally, the viscoelastic response of the bilayer has been studied. In detail, the (saturated-chain) 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and (unsaturated-chain) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) bilayers have been chosen to test their behavior near the protein. Both of the lipids have a polar head but different chemical structures and are similar to the main phospholipids present in the synovial fluid. This study is meaningful for further explaining the worsening friction properties in articular cartilage, as the inactivation of phospholipid bilayers by beta-2-glycoprotein-1 is believed to be a cause of the destruction of cartilage in most rheu the ones which are not in contact with the protein. The POPE bilayer is stiffer due to intramolecular interactions, which are stronger than in the DPPC; thus, the viscous to elastic effects in the POPE case are more significant than in the case of the DPPC. It is, therefore, harder to destabilize the POPE bilayer than the DPPC one.The role of microRNAs (miRNAs) during keratinocyte (KC) differentiation and in skin diseases with epidermal phenotypes has attracted strong interest over the past few years. PIK-III However, combined mRNA and miRNA expression analyses to elucidate the intricate mRNA-miRNA networks of KCs at different stages of differentiation have not been performed yet. In the present study, we investigated the dynamics of miRNA and mRNA expression during KC differentiation in vitro and in normal and psoriatic epidermis. While we identified comparable numbers of up- and downregulated mRNAs (49% and 51%, respectively), miRNAs were predominantly upregulated (76% vs 24%) during KC differentiation. Further bioinformatics analyses suggested an important inhibitory role for miR-155 in KC differentiation, as it was repressed during KC differentiation in normal skin but strongly upregulated in the epidermis of psoriatic skin lesions. Mimicking the inflammatory milieu of psoriatic skin in vitro, we could show that the pro-inflammatory cytokines IL17, IL1β and INFγ synergistically upregulated miR-155 expression in KCs. Forced over-expression of miR-155 in human in vitro skin models specifically reduced the expression of loricrin (LOR) in KCs, indicating that miR-155 interferes with the establishment of a normal epidermal barrier. Together, our data indicate that downregulation of miR-155 during KC differentiation is a crucial step for epidermal barrier formation. Furthermore, its strong upregulation in psoriatic lesions suggests a contributing role of miR-155 in the altered keratinocyte differentiation observed in psoriasis. Therefore, miR-155 represents as a potential target for treating psoriatic skin lesions.

Facebook Pagelike Widget

Who’s Online

Profile picture of Jain Wall
Profile picture of Duncan Bjerg
Profile picture of Mouritzen Hayes
Profile picture of Finch Finch
Profile picture of Mays David
Profile picture of Willis Haney
Profile picture of Dupont Borregaard
Profile picture of Enemark Clemmensen
Profile picture of Mann McCarthy
Profile picture of Bruus Mcbride
Profile picture of Cooney McGrath
Profile picture of Vance Solomon
Profile picture of Spencer Mathews
Profile picture of Quinlan Erichsen
Profile picture of Mead Finley