-
Donaldson Sexton posted an update 2 weeks, 6 days ago
The model was first validated by the experimental results. Then numerical model with different air-gap was evaluated on the torque and speed constant changes. In the end, two equations were generated based on the curves derived from the torque and speed constant calculations. Determining these relationships between motor performance and motor air-gap will facilitate the development of an appropriate BLDC motor size for the BSSD, considering the design limitations in our future work.The sound generated by diseased carotid arteries was investigated through computational means using three-dimensional, idealized, stenosed carotid bifurcation models. Stenosis levels of 50% and 70% with axi-symmetric and asymmetric stenosis shapes were considered. The hemodynamic flow field was obtained by solving the incompressible, Navier-Stokes equations. The resulting pressure fluctuations at the vessel walls were then used as input for a linearized wave equation for the propagation of vibrations through the modeled surrounding tissue. As observed in prior studies, the sound spectra obtained at the tissue surface indicate a ‘break frequency’, i.e. a frequency beyond which there is a drop-off in sound spectra intensity. This frequency was found to scale with stenosis diameter and average velocity at the stenosis throat, provided the stenosis shape remained the same. This has important implications on past attempts to estimate stenosis diameter from the break frequency.Historically, cardiovascular computational models have been developed considering the case of a 70 Kg male patient. However, hemodynamic quantities differ widely due to sex, age, and weight. In this study, we developed a female-specific model of the blood circulation of a young (18-40 y.o.) woman with BSA of 1.6 m2. The lumped-parameter (0D) model, which includes the uterus, has been calibrated with female-specific parameters and validated with sex-specific literature data.Respiration rate can be assessed by analyzing respiratory changes of the electrocardiogram (ECG). Several methods can be applied to derive the respiratory signal from the ECG (EDR signal). In this study, four EDR estimation methods based on QRS features were analyzed. A database with 44 healthy subjects (16 females) in supine and sitting positions was analyzed. Respiratory flow and ECG recordings on leads I, II, III and a Chest lead was studied. A QR slope-based method, an RS slope-based method, an QRS angle-based method and an QRS area-based method were applied. Their performance was evaluated by the correlation coefficient with the reference respiratory volume signal. Significantly higher correlation coefficients in the range r = 0.77 – 0.86 were obtained with the Chest lead for all methods. The EDR estimation method based on the QRS angle provided the highest similarity with the volume signal for all recording leads and subject positions. We found no statistically significant differences according to gender or subject position.Clinical Relevance- This work analyzes the EDR signal from four electrocardiographic leads to obtain the respiratory signal and contributes to a simplified analysis of respiratory activity.This paper reports a pilot study of a hybrid radar-camera system that simultaneously monitors the respiration of two subjects. A prototype system was built involving a low-cost impulse-radio ultra-wideband (IR-UWB) radar module and an optical and depth-sensing camera module. The system detects subjects using the camera and utilizes the distance information acquired to guide the signal processing of the radar. This structure simplifies subject identification and tracking for the radar system, provides further context to the radar, and facilitates the extraction of respiration information. Experiments under different scenarios were conducted to evaluate the performance of the system at different distances and angles from subjects. The localization procedure has an average accuracy of 0.1 m. The respiration rates extracted from the radar are comparable with the values from the reference wearable sensor, reporting an average error of 0.79 respirations per minute (RPM) with a standard deviation of 0.71 RPM. The results suggest that the respiration signals from subjects could be accurately monitored with the presented framework. It is also feasible to monitor two subjects at the same time in most scenarios. The proposed framework shows promising potential to work as a ubiquitous monitoring system for multiple subjects.Video-based photoplethysmography (vPPG) enables remote and contactless detection of the peripheral pulse of blood flow. This provides a potential mean to extract heart rate (HR) and pulse transit time (PTT) for the purpose of remote health monitoring. The accuracy of average HR and PTT extracted from a two-minute vPPG recording has been investigated at six different lighting conditions among participants with a range of Fitzpatrick skin scores. 12 healthy volunteers (6 females, 27 ± 6 years) were recruited. The video, electrocardiogram and finger PPG were acquired from immobile resting subjects. The vPPG signals from red, green and blue channels, and a combination of those were investigated. The vPPG signals were extracted from two regions of interest (ROIs) one on the forehead and one on the palm of the left hand. The estimated HR error (HR-error) was significantly lower for vPPG from green channels in both ROIs (ROI1 [p less then 0.001], ROI2 [p less then 0.05]). read more The signal from ROI1 demonstrated lower HR-error than ROI2 (p less then 0.001). HR-error from the darkest lighting conditions (Lumen 1 and 2) were significantly higher than the others (p less then 0.05). Furthermore, HR-error showed a positive correlation with skin tone scores in every lighting condition. However, at brighter lighting intensity, HR-error was independent of the skin tone score. PTT calculated from vPPG (vPTT) were compared between the 6 levels of lightings and the result was significantly different (p less then 0.05). In darker lighting conditions, the vPTT increased. Pulse arrival time measured from PPG (PAT-PPG) was calculated, and a positive correlation was found between the ratio of vPTT/PAT-PPG and skin tone score at six different lightings. However, this dependency decreases in brighter lighting intensity. These results suggest that HR-error and the ratio of vPTT/PAT increase with darker skins and at darker backgrounds. However, at brighter lighting conditions, the skin tone score is not a confounder of vPPG accuracy.