Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • McClellan Chan posted an update 2 weeks, 5 days ago

    attenuated, such as disorders of consciousness or major depression.Virulence factor, sortase A (SrtA), has crucial roles in the pathogenesis of Gram-positive superbugs. SrtA is a bacterial cell membrane enzyme that anchors crucial virulence factors to the cell wall surface of Gram-positive bacteria. SrtA is not necessary for bacterial growth and viability and is conveniently accessible in the cell membrane; therefore, it is an ideal target for antivirulence drug development. In this review, we focus on antimicrobial resistance (AMR)-expressing bacteria and SrtA as a potential target for overcoming AMR. The mechanism of action of SrtA and its inhibition by various types of inhibitors, such as synthetic small molecules, peptides, and natural products, are provided. Future SrtA research perspectives for alternative drug development to antibiotics are also proposed.Three decades of promise have culminated in the development of gene therapies that can be applied to a broad range of human diseases. After a brief history, we provide an overview of gene therapy types and delivery methods, gene editing technologies, regulatory affairs, clinical trials, approved products, ongoing challenges, and future goals. Information on clinical trials of candidates and on approved products for gene therapy developed between 1988 and 2020 is systematically collated. To obtain this global information, we scanned and reviewed more than 46,000 records of clinical trials from 17 clinical trial database providers. The medical benefits of transformative gene therapies are gradually being accepted by payors, and a significant increase in the number of gene therapy clinical trials and approved gene therapy products has resulted.Granulocyte colony-stimulating factor (G-CSF) is a cytokine used in pharmaceutical preparations for the treatment of chemotherapy-induced neutropenia. Evidence from experimental studies indicates that G-CSF exerts relevant activities in the central nervous system (CNS) in particular after lesions. In acute, subacute, and chronic CNS lesions, G-CSF appears to have strong anti-inflammatory, antiapoptotic, antioxidative, myelin-protective, and axon-regenerative activities. Additional effects result in the stimulation of angiogenesis and neurogenesis as well as in bone marrow stem cell mobilization to the CNS. There are emerging preclinical and clinical data indicating that G-CSF is a safe and effective drug for the treatment of acute and chronic traumatic spinal cord injury (tSCI), which we summarize in this review.Many patients with acute myeloid leukemia (AML) experience poor outcomes following traditional high-dose chemotherapies and complete remission rates remain suboptimal. Chemoresistance is an obstacle to effective chemotherapy and the precise mechanisms involved remain to be determined. Recently, long noncoding RNAs (lncRNAs) have been identified as relevant factors in the development of drug resistance in patients with AML. Furthermore, accumulating data support the importance of lncRNAs as potentially useful novel therapeutic targets in many cancers. Here, we review the role of lncRNAs in the development and induction of the chemoresistance in AML, and suggest lncRNAs as novel molecular markers for diagnosis, prediction of patient response to chemotherapy, and novel therapeutic targets for AML.Development of curative treatments for glioblastoma (GBM) has been stagnant in recent decades largely because of significant financial risks. A portfolio-based strategy for the parallel discovery of breakthrough therapies can effectively reduce the financial risks of potentially transformative clinical trials for GBM. selleck chemicals Using estimates from domain experts at the National Brain Tumor Society (NBTS), we analyze the performance of a portfolio of 20 assets being developed for GBM, diversified across different development phases and therapeutic mechanisms. We find that the portfolio generates a 14.9% expected annualized rate of return. By incorporating the adaptive trial platform GBM AGILE in our simulations, we show that at least one drug candidate in the portfolio will receive US Food and Drug Administration (FDA) approval with a probability of 79.0% in the next decade.’Diabesity’ refers to a rising epidemic indicated by the intricate relationship between obesity and diabetes. The global prevalence of these coexisting, insidious diseases increases social and economic health burdens at a rapid pace. Numerous reports delineate the involvement of the underlying endocannabinoid (EC) signaling system through the cannabinoid-1 (CB1) receptor in the regulation of metabolism and adiposity. Conversely, EC inverse agonists can result in severe depression and suicidal thoughts through interactions with CB1/2 receptors in the brain. This review attempts to elucidate a possible mechanism for the amelioration of diabesity. Moreover, we also highlight the available targets of the CB1 receptor, which could pave the way for safe and effective therapy.Neuromyelitis optica spectrum disorder (NMOSD) is a rare disease of the central nervous system (CNS) that is associated with poor outcomes for patients. Until recently, when complement inhibitors were approved, there was no approved therapy. Most recently, clinical trials of interleukin-6 (IL-6) blockade showed a therapeutic benefit for NMOSD. In this review, we introduce the immunological basis of IL-6 blockade in NMOSD and summarize current knowledge about the clinical use of the IL-6 receptor inhibitors tocilizumab and satralizumab. The aim of extending the half-life of monoclonal antibodies (mAbs) has been actualized by successful clinical translation for Satralizumab, achieved via the neonatal Fc receptor (FcRn) pathway. The basic principles of FcRn are highlighted in this review together with the potential therapeutic benefits of this emerging technology.The enzyme cholesteryl ester transfer protein (CETP), involved in cholesterol metabolism and transportation, is one of the main causes of cardiovascular (CV) disease (CVD). When the CETP concentration is decreased by CETP inhibitors (e.g., anacetrapib, torcetrapib, obicetrapib, etc.), high-density lipoprotein (HDL) particles are formed and low-density lipoprotein (LDL) is decreased along with cholesterol transportation alteration, which reduces the development of atherosclerosis. Here, we discuss the role of CETP inhibitors in reducing well-known ‘bad’ cholesterols and the current status of trials of different CETP inhibitors, their adverse effects, and limitations, as well as the pathophysiology of CETP.

Facebook Pagelike Widget

Who’s Online

Profile picture of Lau Raahauge
Profile picture of Sharp Wilcox
Profile picture of Panduro Garrison
Profile picture of Klint Karlsson
Profile picture of Rafn Gill
Profile picture of Thomasen McGregor
Profile picture of Behrens Nilsson
Profile picture of Drake Ashley
Profile picture of Petterson Finn
Profile picture of Kirkland Hanley
Profile picture of Mercer Mcdaniel
Profile picture of Lowry Suarez
Profile picture of Vasquez Healy
Profile picture of Vester Schmidt
Profile picture of Buhl Mathis