Deprecated: bp_before_xprofile_cover_image_settings_parse_args is deprecated since version 6.0.0! Use bp_before_members_cover_image_settings_parse_args instead. in /home/top4art.com/public_html/wp-includes/functions.php on line 5094
  • Pagh Garner posted an update 2 weeks, 5 days ago

    This was explained by the surface roughness and by the biochar agglomerations present in the composite. In conclusion, the thermochemical conversion of black spruce wood chips into biochar makes it brittle but more hydrophobic, thereby reducing the wettability of the BPCs.Although large-scale synthesis of layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) has been made possible, mechanical exfoliation of layered van der Waals crystal is still indispensable as every new material research starts with exfoliated flakes. However, it is often a tedious task to find the flakes with desired thickness and sizes. We propose a method to determine the thickness of few-layer flakes and facilitate the fast searching of flakes with a specific thickness. By using hyperspectral wild field microscopy to acquire differential reflectance and transmittance spectra, we demonstrate unambiguous recognition of typical TMDCs and their thicknesses based on their excitonic resonance features in a single step. Distinct from Raman spectroscopy or atomic force microscopy, our method is non-destructive to the sample. By knowing the contrast between different layers, we developed an algorithm to automatically search for flakes of desired thickness in situ. We extended this method to measure tin dichalcogenides, such as SnS2 and SnSe2, which are indirect bandgap semiconductors regardless of the thickness. We observed distinct spectroscopic behaviors as compared with typical TMDCs. Layer-dependent excitonic features were manifested. Our method is ideal for automatic non-destructive optical inspection in mass production in the semiconductor industry.Personal Thermal Comfort models consider personal user feedback as a target value. The growing development of integrated “smart” devices following the concept of the Internet of Things and data-processing algorithms based on Machine Learning techniques allows developing promising frameworks to reach the best level of indoor thermal comfort closest to the real needs of users. The article investigates the potential of a new approach aiming at evaluating the effect of visual stimuli on personal thermal comfort perception through a comparison of 25 participants’ feedback exposed to a real scenario in a test cell and the same environment reproduced in Virtual Reality. The users’ biometric data and feedback about their thermal perception along with environmental parameters are collected in a dataset and managed with different Machine Learning techniques. The most suitable algorithm, among those selected, and the influential variables to predict the Personal Thermal Comfort Perception are identified. The Extra Trees classifier emerged as the most useful algorithm in this specific case. In real and virtual scenarios, the most important variables that allow predicting the target value are identified with an average accuracy higher than 0.99.Drug-induced liver toxicity is one of the most common reasons for the failure of drugs in clinical trials and frequent withdrawal from the market. Reasons for such failures include the low predictive power of in vivo studies, that is mainly caused by metabolic differences between humans and animals, and intraspecific variances. In addition to factors such as age and genetic background, changes in drug metabolism can also be caused by disease-related changes in the liver. Such metabolic changes have also been observed in clinical settings, for example, in association with a change in liver stiffness, a major characteristic of an altered fibrotic liver. For mimicking these changes in an in vitro model, this study aimed to develop scaffolds that represent the rigidity of healthy and fibrotic liver tissue. We observed that liver cells plated on scaffolds representing the stiffness of healthy livers showed a higher metabolic activity compared to cells plated on stiffer scaffolds. Additionally, we detected a positive effect of a scaffold pre-coated with fetal calf serum (FCS)-containing media. Deucravacitinib JAK inhibitor This pre-incubation resulted in increased cell adherence during cell seeding onto the scaffolds. In summary, we developed a scaffold-based 3D model that mimics liver stiffness-dependent changes in drug metabolism that may more easily predict drug interaction in diseased livers.Ratios of physical activity and sports participation in people with cerebral palsy (CP) are still low compared with people without a disability. For an adequate and useful practice, physical activity professionals should understand how different types of CP profiles constrain the performance of motor skills that are required during sports practice. This study aims to develop an observation-based assessment tool to evaluate activity limitations in individuals with a moderate level of CP when performing skills requiring jumping, sprinting, change of direction, coordination, and balance. Nineteen observers with different backgrounds from five world regions were recruited for this study, with accredited experience classifying/observing para-athletes with CP. All observers watched videos of 20 international para-athletes with different CP profiles (bilateral spasticity, athetosis/ataxia, unilateral spasticity; all Gross Motor Function Classification System level I) performing 16 motor tasks, and their observations were recorded throughout an ad-hoc data collection instrument. A total of 6080 units of qualitative information were recorded for data analysis. An observation-based tool with qualitative descriptors is derived from data analyses, describing how coordination and balance affected mainly in those with dyskinesia/ataxia, range of movement in those with diplegia, and asymmetries in those with hemiplegia. This tool would help sports practitioners and physical educators to better understand how different CP profiles constrain the performance of motor skills.The anodic polarization response of magnesium alloy AZ31 was first characterized during exposure to aerated 0.1 M NaCl solutions with millimolar additions of NaVO3, Na3PO4, Na2HPO4, NaF and various pairings to assess their ability to inhibit corrosion kinetics and retard localized corrosion. Each of the candidate inhibitors reduced the corrosion rate of the alloy to some degree. A Na3PO4-NaVO3 pair produced a good inhibiting effect decreasing the corrosion rate to about 10-7 A/cm2, which was two orders of magnitude lower than the uninhibited control case. A Bliss Independence assessment indicated that this inhibitor pair acted synergistically. A Na2HPO4-NaVO3 pair reduced the corrosion rate to 10-6 A/cm2 but was not assessed to be acting synergistically. The NaVO3-NaF pair did not reduce the corrosion rate significantly compared to the control case and was an antagonistic pairing. SEM imaging showed film formation due to exposure, which appears to be the origin of the observed inhibition. The resistance to localized corrosion was assessed as the difference in the breakdown potential and the corrosion potential, with larger values indicating a lower probability of localized corrosion during free corrosion exposures.

Facebook Pagelike Widget

Who’s Online

Profile picture of Duke Rosendal
Profile picture of Patterson Contreras
Profile picture of Choate Ryan
Profile picture of Schofield Pickett
Profile picture of Barefoot Barry
Profile picture of Mcguire Charles
Profile picture of Jimenez Woodard
Profile picture of Ayers Burke
Profile picture of Kamper Ankersen
Profile picture of Krarup Cramer
Profile picture of Lorentzen Franklin
Profile picture of Terkelsen Harding
Profile picture of Pace Isaksen
Profile picture of Hartley Gallagher
Profile picture of palermo2