-
Voigt Dahlgaard posted an update 9 hours, 35 minutes ago
d greater severity of pulmonary disease, indicated by respiratory symptoms, pulmonary exam, and intrathoracic radiologic findings. Chest CT was the most sensitive indicator of pulmonary involvement in both disorders. Lymphocytic inflammation is the key histologic feature of both disorders. Pediatric pulmonologists should consider these disorders of immune dysregulation in the relevant clinical context to provide earlier diagnosis, comprehensive pulmonary evaluation and treatment.Methylation biomarkers are promising tools for diagnosis and disease prevention. The S5 classifier is aimed at the prevention of cervical cancer by the early detection of cervical intraepithelial neoplasia (CIN). S5 is based on pyrosequencing a promoter region of EPB41L3 and five late regions of HPV types 16, 18, 31, and 33 following bisulfite conversion of DNA. Good biomarkers should perform well in a variety of sample types such as exfoliated cells, fresh frozen or formalin-fixed paraffin-embedded (FFPE) materials. Here, we tested the performance of S5 on 315 FFPE biopsies with paired exfoliated cervical samples using four different conversion kits (Epitect Bisulfite, Epitect Fast Bisulfite, EZ DNA Methylation, and EZ DNA Methylation-Lightning). The S5 values from FFPE biopsies for all kits were significantly correlated with those obtained from their paired exfoliated cells. For the EZ DNA Methylation kit, we observed an average increased methylation of 4.4% in FFPE. AGK2 mw This was due to incomplete conversion of DNA (73% for FFPE vs. 95% for cells). The other kits had a DNA conversion rate in FFPE similar to the cells (95%-97%). S5 performed well at discriminating less then CIN2 lesions from CIN2+ lesions on the FFPE with all kits given optimized adjustments to the cut-off. The area under the curve (AUC) for S5 on FFPE was not significantly different from the paired cells (0.74-0.79 vs. 0.81). The best sensitivity and specificity were obtained for EZ DNA Methylation after the adjustment of the cut-off to reflect its lower conversion rate. Consistent methylation results can be obtained from FFPE material regardless of the conversion kit used. The S5 classifier performed as well on FFPE material as on exfoliated cells with adjusted cut-off allowing easier clinical implementation.The clinical use of ultrasound has dramatically increased, necessitating early ultrasound education and the development of new tools in ultrasound training and assessment. The goal of this study was to devise a novel low-resource examination that tested the anatomical knowledge and technical skill of early undergraduate medical students in a gross anatomy course. The team-based ultrasound objective structured practice examination (OSPE) was created as a method for assessing practical ultrasound competencies, anatomical knowledge, and non-technical skills such as teamwork and professionalism. The examination utilized a rotation of students through four team roles as they scanned different areas of the body. This station-based examination required four models and four instructors, and tested ultrasound skills in the heart, abdominal vessels, abdominal organs, and neck regions. A Likert scale survey assessed student attitudes toward the examination. Survey data from participants (n = 46) were examined along with OSPE examination grades (n = 52). Mean and standard deviations were calculated for examination items and survey responses. Student grades were high in both technical (96.5%). and professional (96.5%) competencies with structure identification scoring the lowest (93.8%). There were no statistical differences between performances in each of the body regions being scanned. The survey showed that students deemed the examination to be fair and effective. In addition, students agreed that the examination motivated them to practice ultrasound. The team-based OSPE was found to be an efficient and student-favored method for evaluating integrated ultrasound competencies, anatomical knowledge, team-work, and professional attributes.
Mechanical circulatory support (MCS) results in substantial improvement of prognosis and functional capacity. Currently, duration of MCS as a bridge to transplantation (BTT) is often prolonged due to shortage of donor hearts. Because long-term results of exercise capacity after MCS are largely unknown, we studied serial cardiopulmonary exercise tests (CPETs) during the first year after MCS implantation.
Cardiopulmonary exercise tests at 6 and 12months after MCS implantation in BTT patients were retrospectively analysed, including clinical factors related to exercise capacity. A total of 105 MCS patients (67% male, 50±12years) underwent serial CPET at 6 and 12months after implantation. Power (105±35 to 114±40W; P≤0.001) and peak VO2 per kilogram (pVO2/kg) improved significantly (16.5±5.0 to 17.2±5.5mL/kg/min (P=0.008)). Improvement in pVO2 between 6 and 12months after LVAD implantation was not related to heart failure aetiology or haemodynamic severity prior to MCS. We identified maximal heart rate at exert information for the growing group of long-term MCS patients as this is critical for the quality of life of patients.Fluorescence lifetime imaging (FLIm) is an optical spectroscopic imaging technique capable of real-time assessments of tissue properties in clinical settings. Label-free FLIm is sensitive to changes in tissue structure and biochemistry resulting from pathological conditions, thus providing optical contrast to identify and monitor the progression of disease. Technical and methodological advances over the last two decades have enabled the development of FLIm instrumentation for real-time, in situ, mesoscopic imaging compatible with standard clinical workflows. Herein, we review the fundamental working principles of mesoscopic FLIm, discuss the technical characteristics of current clinical FLIm instrumentation, highlight the most commonly used analytical methods to interpret fluorescence lifetime data and discuss the recent applications of FLIm in surgical oncology and cardiovascular diagnostics. Finally, we conclude with an outlook on the future directions of clinical FLIm.