-
Houmann McHugh posted an update 2 weeks, 5 days ago
The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.The electrochemical behaviors of rare earth (RE) ions have extensively been studied because of their high potential applications to the reprocessing of used nuclear fuels and RE-containing materials. In the present study, we fully investigated the electrochemical behaviors of RE(III) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) ions over a Ni sheet electrode in 0.1 M NaClO4 electrolyte solution by cyclic voltammetry between +0.5 and -1.5 V (vs. Ag/AgCl). Amperometry electrodeposition experiments were performed between -1.2 and -0.9 V to recover RE elements over the Ni sheet. The successfully RE-recovered Ni sheets were fully characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and photoluminescence spectroscopy. The newly reported recovery data for RE(III) ions over a metal electrode provide valuable information on the development of the treatment methods of RE elements.Since ancient times complementary therapies have been based on the use of medicinal plants, natural preparations and essential oils in the treatment of various diseases. Their use in medical practice is recommended in view of their low toxicity, pharmacological properties and economic impact. This paper aims to test the antimicrobial effect of natural preparation based on clove, orange and bergamot essential oils on a wide range of microorganisms that cause infections in humans including Streptococcus pyogenes, Staphylococcus aureus, Shigella flexneri, Candida parapsilosis, Candida albicans, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhimurium and Haemophilus influenza. selleck kinase inhibitor Three natural preparations such as one-component emulsions clove (ECEO), bergamote (EBEO), and orange (EOEO), three binary E(BEO/CEO), E(BEO/OEO), E(CEO/OEO) and a tertiary emulsion E(OEO/BEO/CEO) were obtained, characterized and tested for antimicrobial effects. Also, the synergistic/antagonistic effects, generated by the presence of the main chemical compounds, were studied in order to recommend a preparation with optimal antimicrobial activity. The obtained results underline the fact that the monocomponent emulsion ECEO shows antimicrobial activity, while EOEO and EBEO do not inhibit the development of the analyzed strains. In binary or tertiary emulsions E(BEO/CEO), E(CEO/OEO) and E(OEO/ BEO/CEO) the antimicrobial effect of clove oil is potentiated due to the synergism exerted by the chemical compounds of essential oils.The ongoing pandemic caused by the novel coronavirus has been the greatest global health crisis since the Spanish flu pandemic of 1918. Thus far, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 1 million deaths, and there is no cure or vaccine to date. The recently solved crystal structure of the SARS-CoV-2 main protease has been a major focus for drug-discovery efforts. Here, we present a fragment-guided approach using ZINCPharmer, where 17 active fragments known to bind to the catalytic centre of the SARS-CoV-2 main protease (SARS-CoV-2 Mpro) were used as pharmacophore queries to search the ZINC databases of natural compounds and natural derivatives. This search yielded 134 hits that were then subjected to multiple rounds of in silico analyses, including blind and focused docking against the 3D structure of the main protease. We scrutinised the poses, scores, and protein-ligand interactions of 15 hits and selected 7. The scaffolds of the seven hits were structurally distinct from known inhibitor scaffolds, thus indicating scaffold novelty. Our work presents several novel scaffolds as potential candidates for experimental validation against SARS-CoV-2 Mpro.The brain-derived neurotrophic factor (BDNF)/tyrosine receptor kinase B (TrkB) pathway was previously associated with key oncogenic outcomes in a number of adenocarcinomas. The aim of our study was to determine the role of this pathway in mucoepidermoid carcinoma (MEC). Three MEC cell lines (UM-HMC-2, H253 and H292) were exposed to Cisplatin, the TrkB inhibitor, ANA-12 and a combination of these drugs. Ultrastructural changes were assessed through transmission electron microscopy; scratch and Transwell assays were used to assess migration and invasion; and a clonogenic assay and spheroid-forming assay allowed assessment of survival and percentage of cancer stem cells (CSC). Changes in cell ultrastructure demonstrated Cisplatin cytotoxicity, while the effects of ANA-12 were less pronounced. Both drugs, used individually and in combination, delayed MEC cell migration, invasion and survival. ANA-12 significantly reduced the number of CSC, but the Cisplatin effect was greater, almost eliminating this cell population in all MEC cell lines.